Modern aspects of regulatory, pathophysiological and toxic effects of cobalt ions during oral intake in the human body
S.I. Dolomatov1, T.P. Sataeva1, W. Zukow2
1Medical Academy named after S.I. Georgievsky of Vernadsky Crimea Federal University, 5/7 Lenin Boulevard, Simferopol, 295006, Russian Federation jurisdiction
2Universitas Nicolai Copernici, 1 Lwowska Str., 87–100 Toruń, Poland
Cobalt is an essential microelement which is an indispensable part of several enzymes and co-enzymes. Cobalt ions may occur in the environment from both natural sources and due to human activities. This metal is very widespread in the natural environment and can be formed due to anthropogenic activity. Toxic effects produced by cobalt and its compounds depend on the physical and chemical properties of these complexes, including their electronic structure, ion parameters (charge-size relations) and kinetics. Cobalt has both beneficial and harmful effects on human health. Cobalt is beneficial for humans because it is a part of vitamin B12, which is essential to maintain human health. If humans and animals are exposed to levels of cobalt normally found in the environment, it is not harmful. When excessive cobalt amounts enter a human body, multiple and chronic harmful health effects can occur and the longer the cobalt ions are stored in the body, the more changes they cause in cells. Cobalt gets into a body via several ways: mainly with food, via the respiratory system, through the skin or as a component of various biomaterials. Despite this metal being abundant, much of our knowledge on cobalt toxicity is based mainly on studies performed on animals. Undoubtedly, inorganic forms of cobalt are toxic as they accumulate in various tissues and can evoke a chain of pathological cascade changes in cells. Although some cobalt effects might be beneficial for medicine. Therefore, the purpose of our review is to provide the current analysis about the most significant regulatory, pathophysiological and epigenetic effects of Co2+ in a human body.
- Hokin B., Adams M., Ashton J., Louie H. Comparison of the dietary cobalt intake in three different Australian diets. Asia. Pac. J. Clin. Nutr., 2004, vol. 13, no. 3, pp. 289–291.
- Gál J., Hursthouse A., Tatner P., Stewart F., Welton R. Cobalt and secondary poisoning in the terrestrial food chain: Data review and research gaps to support risk assessment. Environment International, 2008, no. 34, pp. 821–838. DOI: 10.1016/j.envint.2007.10.006
- Scientific Opinion on the use of cobalt compounds as additives in animal nutrition. EFSA Panel on Additives and Prod-ucts or Substances used in Animal Feed (FEEDAP). EFSA Journal, 2009, vol. 7, no. 12: 1383, 45 p. DOI: 10.2903/j.efsa.2009.1383
- Tvermoes B.E., Paustenbach D.J., Kerger B.D., Finley B.L., Unice K.M. Review of cobalt toxicokinetics following oral dosing: Implications for health risk assessments and metal-on-metal hip implant patients. Crit. Rev. Toxicol., 2015, vol. 45, no. 5, pp. 367–387. DOI: 10.3109/10408444.2014.985818
- Tvermoes B.E., Unice K.M., Paustenbach D.J., Finley B.L., Otani J.M., Galbraith D.A. Effects and blood concentrations of cobalt after ingestion of 1 mg/d by human volunteers for 90 d. Am. J. Clin. Nutr., 2014, no. 99, pp. 632–646. DOI: 10.3945/ajcn.113.071449
- Unice K.M., Monnot A.D., Gaffney S.H., Tvermoes B.E., Thuett K.A., Paustenbach D.J., Finley B.L. Inorganic cobalt supplementation: Prediction of cobalt levels in whole blood and urine using a biokinetic model. Food and Chemical Toxicology, 2012, vol. 50, no. 7, pp. 2456–2461. DOI: 10.1016/j.fct.2012.04.009
- Wei B., Yu J., Wang J., Li H., Yang L., Kong C. Trace Metals in the Urine and Hair of a Population in an Endemic Ar-senism Area. Biol. Trace. Elem. Res., 2018, vol. 182, no. 2, pp. 209–216. DOI: 10.1007/s12011-017-1108-x
- Simonsen L.O., Harbak H., Bennekou P. Cobalt metabolism and toxicology – a brief update. Sci. Total. Environ., 2012, vol. 432, pp. 210–215. DOI: 10.1016/j.scitotenv.2012.06.009
- Ryuko S., Ma Y., Ma N., Sakaue M., Kuno T. Genome-wide screen reveals novel mechanisms for regulating cobalt up-take and detoxification in fission yeast. Mol. Genet. Genomics, 2012, vol. 287, no. 8, pp. 651–662. DOI: 10.1007/s00438-012-0705-9
- Leyssens L., Vinck B., Van Der Straeten C., Wuyts F., Maes L. Cobalt toxicity in humans – a review of the potential sources and systemic health effects. Toxicology, 2017, no. 387, pp. 43–56. DOI: 10.1016/j.tox.2017.05.015
- De Boeck M., Kirsch-Volders M., Lison D. Cobalt and antimony: genotoxicity and carcinogenicity. Mutat. Res., 2003, vol. 533, no. 1, 2, pp. 135–152. DOI: 10.1016/j.mrfmmm.2003.07.012
- Paustenbach D.J., Tvermoes B.E., Unice K.M., Finley B.L., Kerger B.D. A review of the health hazards posed by cobalt. Crit. Rev. Toxicol., 2013, vol. 43, no. 4, pp. 316–362. DOI: 10.3109/10408444.2013.779633
- Liang Y., Zhen X., Wang K., Ma J. Folic acid attenuates cobalt chloride-induced PGE2 production in HUVECs via the NO/HIF-1alpha/COX-2 pathway. Biochem. Biophys. Res. Commun., 2017, vol. 490, no. 2, pp. 567–573. DOI: 10.1016/j.bbrc.2017.06.079
- Yorita C.K.L. Metals in blood and urine, and thyroid function among adults in the United States 2007–2008. Int J. Hyg. Environ. Health, 2013, vol. 216, no. 6, pp. 624–632. DOI: 10.1016/j.ijheh.2012.08.005
- Catalani S., Rizzetti M.C., Padovani A., Apostoli P. Neurotoxicity of cobalt. Hum. Exp. Toxicol., 2012, vol. 31, no. 5, pp. 421–437. DOI: 10.1177/0960327111414280
- Dai Y., Li W., Zhong M., Chen J., Liu Y., Cheng Q., Li T. Preconditioning and post-treatment with cobalt chloride in rat model of perinatal hypoxic–ischemic encephalopathy. Brain Dev., 2014, vol. 36, no. 3, pp. 228–240. DOI: 10.1016/j.braindev.2013.04.007
- Mendy A., Gasana J., Vieira E.R. Urinary heavy metals and associated medical conditions in the US adult population. Int. J. Environ. Health Res., 2012, vol. 22, no. 2, pp. 105–118. DOI: 10.1080/09603123.2011.605877
- Yuan Y., Hilliard G., Ferguson T., Millhorn D.E. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha. J. Biol. Chem., 2003, vol. 278, no. 18, pp. 15911–15916. DOI: 10.74/jbc.M300463200
- Maxwell P., Salnikow K. HIF-1: an oxygen and metal responsive transcription factor. Cancer Biol. Ther., 2004, vol. 3, no. 1, pp. 29–35. DOI: 10.4161/cbt.3.1.547
- Jelkmann W. The Disparate Roles of Cobalt in Erythropoiesis, and Doping Relevance. Open Journal of Hematology, 2012, vol. 3, no. 1, pp. 3–6. DOI: 10.13055/ojhmt_3_1_6.121211
- Muñoz‐Sánchez J., Chánez‐Cárdenas M.E. The use of cobalt chloride as a chemical hypoxia model. J. Appl. Toxicol., 2018, vol. 39, no. 4, pp. 1–15. DOI: 10.1002/jat.3749
- Catalani S., Leone R., Rizzetti M.C., Padovani A., Apostoli P. The Role of Albumin in Human Toxicology of Cobalt: Contribution from a Clinical Case. ISRN Hematology, 2011, vol. 2011, 6 p. DOI: 10.5402/2011/690620
- Jomova K., Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology, 2011, vol. 283, no. 2, 3, pp. 65–87. DOI: 10.1016/j.tox.2011.03.001
- Zadnipryany I.V., Tretiakova O.S., Sataieva T.P., Zukow W. Experimental review of cobalt induced cardiomyopathy. Russian Open Medical Journal, 2017, vol. 6, no. 1, pp. 1–4. DOI: 10.15275/rusomj.2017.0103
- Wang G., Hazra T.K., Mitra S., Lee H.M., Englander E.W. Mitochondrial DNA damage and a hypoxic response are induced by CoCl(2) in rat neuronal PC12 cells. Nucleic. Acids. Res., 2000, vol. 28, no. 10, pp. 2135–2140. DOI: 10.1093/nar/28.10.2135
- Lee J.-H., Choi S.-H., Baek M.-W., Kim M.-H., Kim H.-J., Kim S.-H., Oh S.-J., Park H.-J. [et al.]. CoCl2 induces apoptosis through the mitochondria- and death receptor-mediated pathway in the mouse embryonic stem cells. Mol. Cell. Biochem., 2013, vol. 379, pp. 133–140. DOI: 10.1007/s11010-013-1635-5
- K. Chamaon, P. Schönfeld, F. Awiszus, J. Bertrand, C.H. Lohmann. Ionic cobalt but not metal particles induces ROS generation in immune cells in vitro. J. Biomed. Mater. Res. B. Appl. Biomater., 2019, vol. 107, no. 4, pp. 1246–1253. DOI: 10.1002/jbm.b.34217
- Lawrence H., Deeha D.J., Holland J.P., Anjum S.A., Mawdesley A.E., Kirby J.A., Tyson-Cappera A.J. Cobalt ions re-cruit inflammatory cells in vitro through human Toll-like receptor-4. Biochem. Biophys. Rep., 2016, vol. 7, pp. 374–378. DOI: 10.1016/j.bbrep.2016.07.003
- S.A. Anjum, H. Lawrence, J.P. Holland, J.A. Kirby, D.J. Deehan, A.J. Tyson Effect of cobalt-mediated Toll-like re-ceptor 4 activation on inflammatory responses in endothelial cells. Oncotarget, 2016, vol. 7, no. 47, pp. 76471–76478. DOI: 10.18632/oncotarget.13260
- Shweta, Mishra K.P., Chanda S., Singh S.B., Ganju L. A comparative immunological analysis of CoCl2 treated cells with in vitro hypoxic exposure. Biometals, 2015, vol. 28, no. 1, pp. 175–185. DOI: 10.1007/s10534-014-9813-9 31. Shrivas-tava K., Bansal A., Singh B., Sairam M., Ilavazhagan G. Sub-chronic oral toxicity study in Sprague-Dawley rats with hypoxia mimetic cobalt chloride towards the development of promising neutraceutical for oxygen deprivation. Exp. Toxicol. Pathol., 2010, vol. 62, no. 5, pp. 489–496. DOI: 10.1016/j.etp.2009.06.012
- Liu Y., Xu H., Liu F., Tao R., Yin J. Effects of serum cobalt ion concentration on the liver, kidney and heart in mice. Orthopaedic Surgery, 2010, vol. 2, no. 2, pp. 134–140. DOI: 10.1111/j.1757-7861.2010.00076.x
- Akinrinde A.S., Oyagbemi A.A., Omobowale T.O., Asenuga E.R., Ajibade T.O. Alterations in blood pressure, antiox-idant status and caspase 8 expression in cobalt chloride-induced cardio-renal dysfunction are reversed by Ocimum gratissimum and gallic acid in Wistar rats. J. Trace. Elem. Med. Biol., 2016, no. 36, pp. 27–37. DOI: 10.1016/j.jtemb.2016.03.015
- Feng W., Zhang Y., Deng H., Li S.J. Interaction of divalent metal ions with human translocase of inner membrane of mitochondria TIM23. Biochem. Biophys. Res. Commun., 2016, vol. 475, no. 1, pp. 76–80. DOI: 10.1016/j.bbrc.2016.05.039
- Niu N., Li Z., Zhu M., Sun H., Yang J., Xu S., Zhao W., Song R. Effects of nuclear respiratory factor-1 on apoptosis and mitochondrial dysfunction induced by cobalt chloride in H9C2 cells. Molecular medicine reports, 2019, vol. 19, no. 3, pp. 2153–2163. DOI: 10.3892/mmr.2019.9839
- Hantson P. Mechanisms of toxic cardiomyopathy. Clin. Toxicol., 2019, vol. 57, no. 1, pp. 1–9. DOI: 10.1080/15563650.2018.1497172
- Kurhaluk N., Lukash O., Nosar V., Portnychenko A.G., Portnychenko V., Wszedybyl-Winklewska M., Winklewski P.J. Liver mitochondrial respiratory plasticity and oxygen uptake evoked by cobalt chloride in rats with low and high resistance to extreme hypobaric hypoxia. Can. J. Physiol. Pharmacol., 2019, vol. 97, no. 5, pp. 392–399. DOI: 10.1139/cjpp-2018-0642
- He Y., Gan X., Zhang L., Liu B., Zhu Z., Li T., Zhu J., Chen J., Yu H. CoCl2 induces apoptosis via a ROS-dependent pathway and Drp1-mediated mitochondria fission in periodontal ligament stem cells. Am. J. Physiol. Cell. Physiol., 2018, vol. 315, no. 3, pp. C389–C397. DOI: 10.1152/ajpcell.00248.2017
- Saxena S., Shukla D., Bansal A. Augmentation of aerobic respiration and mitochondrial biogenesis in skeletal muscle by hypoxia preconditioning with cobalt chloride. Toxicol. Appl. Pharmacol., 2012, vol. 264, no. 3, pp. 324–334. DOI: 10.1016/j.taap.2012.08.033
- Liu Y., Hong H., Lu X., Wang W., Liu F., Yang H.L. L-Ascorbic Acid Protected Against Extrinsic and Intrinsic Apoptosis Induced by Cobalt Nanoparticles Through ROS Attenuation. Biol. Trace. Elem. Res., 2017, vol. 175, no. 2, pp. 428–439. DOI: 10.1007/s12011-016-0789-x
- Ebert B., Jelkmann W. Intolerability of cobalt salt as erythropoietic agent. Drug. Test. Anal., 2014, vol. 6, no. 3, pp. 185–189. DOI: 10.1002/dta.1528
- Hoffmeister T., Schwenke D., Wachsmuth N., Krug O., Thevis M., Byrnes W.C., Schmidt W.F.J. Erythropoietic effects of low-dose cobalt application. Drug. Test. Anal., 2019, vol. 11, no. 2, pp. 200–207. DOI: 10.1002/dta.2478
- Karaczyn A., Ivanov S., Reynolds M., Zhitkovich A., Kasprzak K.S., Salnikow K. Ascorbate depletion mediates up-regulation of hypoxia-associated proteins by cell density and nickel. J. Cell. Biochem., 2006, vol. 97, no. 5, pp. 1025–1035. DOI: 10.1002/jcb.20705
- Kaczmarek M., Cachau R.E., Topol I.A., Kasprzak K.S., Ghio A., Salnikow K. Metal ions-stimulated iron oxidation in hydroxylases facilitates stabilization of HIF-1 alpha protein. Toxicol. Sci., 2009, vol. 107, no. 2, pp. 394–403. DOI: 10.1093/toxsci/kfn251
- Yuan Y., Hilliard G., Ferguson T., Millhorn D.E. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha. J. Biol. Chem., 2003, vol. 278, no. 18, pp. 15911–15916. DOI: 10.74/jbc.M300463200
- Shrivastava K., Ram M.S., Bansal A., Singh S.S., Ilavazhagan G. Cobalt supplementation promotes hypoxic tolerance and facilitates acclimatization to hypobaric hypoxia in rat brain. High. Alt. Med. Biol., 2008, vol. 9, no. 1, pp. 63–75. DOI: 10.1089/ham.2008.1046
- Jeon E.S., Shin J.H., Hwang S.J., Moon G.J., Bang O.Y., Kim H.H. Cobalt chloride induces neuronal differentiation of human mesenchymal stem cells through upregulation of microRNA-124a. Biochem. Biophys. Res. Commun., 2014, vol. 444, no. 4, pp. 581–587. DOI: 10.1016/j.bbrc.2014.01.114
- Chai Y.C., Mendes L.F., Van Gastel N., Carmeliet G., Luyten F.P. Fine-tuning pro-angiogenic effects of cobalt for simultaneous enhancement of vascular endothelial growth factor secretion and implant neovascularization. Acta Biomater., 2018, no. 72, pp. 447–460. DOI: 10.1016/j.actbio.2018.03.048
- Chen Y., Zhao Q., Yang X., Yu X., Yu D., Zhao W. Effects of cobalt chloride on the stem cell marker expression and osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Cell. Stress. Chaperones., 2019, vol. 24, no. 3, pp. 527–538. DOI: 10.1007/s12192-019-00981-5
- Matsumoto M., Makino Y., Tanaka T., Tanaka H., Ishizaka N., Noiri E., Fujita T., Nangaku M. Induction of Renopro-tective Gene Expression by Cobalt Ameliorates Ischemic Injury of the Kidney in Rats. J. Am. Soc. Nephrol., 2003, no. 14, pp. 1825–1832.
- Tanaka T., Kojima I., Ohse T., Ingelfinger J.R., Adler S., Fujita T., Nangaku M. Cobalt promotes angiogenesis via hy-poxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Laboratory Investigation, 2005, no. 85, pp. 1292–1307. DOI: 10.1038/labinvest.3700328
- Oyagbemi A.A., Omobowale T.O., Awoyomi O.V., Ajibade T.O., Falayi O.O., Ogunpolu B.S., Okotie U.J., Asenuga E.R. [et al.]. Cobalt chloride toxicity elicited hypertension and cardiac complication via induction of oxidative stress and upregula-tion of COX-2/Bax signaling pathway. Hum. Exp. Toxicol., 2019, vol. 38, no. 5, pp. 519–532. DOI: 10.1177/0960327118812158
- Kong D., Zhang F., Shao J., Wu L., Zhang X., Chen L., Lu Y., Zheng S. Curcumin inhibits cobalt chloride-induced epithelial-to-mesenchymal transition associated with interference with TGF-β/Smad signaling in hepatocytes. Lab. Invest., 2015, vol. 95, no. 11, pp. 1234–1245. DOI: 10.1038/labinvest.2015.107
- Czarnek K., Terpiłowska S., Siwicki A.K. Selected aspects of the action of cobalt ions in the human body. Cent. Eur. J. Immunol., 2015, vol. 40, no. 2, pp. 236–242. DOI: 10.5114/ceji.2015.52837
- Nagasawa H. Pathophysiological response to hypoxia – from the molecular mechanisms of malady to drug discovery: drug discovery for targeting the tumor microenvironment. J. Pharmacol. Sci., 2011, vol. 115, no. 4, pp. 446–452.
- Eskandani M., Vandghanooni S., Barar J., Nazemiyeh H., Omidi Y. Cell physiology regulation by hypoxia inducible factor-1: Targeting oxygen-related nanomachineries of hypoxic cells. Int J. Biol. Macromol., 2017, no. 99, pp. 46–62. DOI: 10.1016/j.ijbiomac.2016.10.113
- Liang Y., Zhen X., Wang K., Ma J. Folic acid attenuates cobalt chloride-induced PGE2 production in HUVECs via the NO/HIF-1alpha/COX-2 pathway. Biochem. Biophys. Res. Commun., 2017, vol. 490, no. 2, pp. 567–573. DOI: 10.1016/j.bbrc.2017.06.079
- Schmidt M., Raghavan B., Müller V., Vogl T., Fejer G., Tchaptchet S., Keck S., Kalis C. [et al.]. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat. Immunol., 2010, vol. 11, no. 9, pp. 814–819. DOI: 10.1038/ni.1919
- Samelko L., Landgraeber S., McAllister K., Jacobs J., Hallab N.J. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related In-flammation. PLoS ONE, 2016, vol. 11, no. 7, pp. e0160141. DOI: 10.1371/journal.pone.0160141
- Kwak J., Choi S.J., Oh W., Yang Y.S., Jeon H.B., Jeon E.S. Cobalt Chloride Enhances the Anti-Inflammatory Potency of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells through the ERK-HIF-1α-MicroRNA-146a-Mediated Sig-naling Pathway. Stem. Cells International, 2018, vol. 2018, 12 p. DOI: 10.1155/2018/4978763
- Xu J., Nyga A., Li W., Zhang X., Gavara N., Knight M.M., Shelton J.C. Cobalt ions stimulate a fibrotic response through matrix remodelling, fibroblast contraction and release of pro-fibrotic signals from macrophages. European Cells and Materials, 2018, no. 36, pp. 142–155. DOI: 10.22203/eCM.v036a11
- Ratha S., Dasa L., Kokatea S., Ghosha N., Dixita P., Routb N., Singhc S.P., Chattopadhyaya S. [et al.]. Inhibition of histone/lysine acetyltransferase activity kills CoCl2-treated and hypoxia-exposed gastric cancer cells and reduces their invasiveness. Int J. Biochem. Cell. Biol., 2017, no. 82, pp. 28–40. DOI: 10.1016/j.biocel.2016.11.014
- Li C.-L., Xu Z.-B., Fan X.-L., Chen H.-X., Yu Q.-N., Fang S.-B., Wang S.-Y., Lin Y.-D., Fu Q.-L. MicroRNA-21 Mediates the Protective Effects of Mesenchymal Stem Cells Derived from iPSCs to Human Bronchial Epithelial Cell Injury Under Hypoxia. Cell. Transplantation., 2018, vol. 27, no. 3, pp. 571–583. DOI: 10.1177/0963689718767159
- Permenter M.G., Dennis W.E., Sutto T.E., Jackson D.A., Lewis J.A. [et al.]. Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines. PLoS ONE, 2013, vol. 8, no. 12, pp. e83751. DOI: 10.1371/journal.pone.0083751
- Salnikow K., Zhitkovich A. Genetic and Epigenetic Mechanisms in Metal Carcinogenesis and Cocarcinogenesis: Nickel, Arsenic and Chromium. Chem. Res. Toxicol., 2008, vol. 21, no. 1, pp. 28–44. DOI: 10.1021/tx700198a
- Salnikow K., Aprelikova O., Ivanov S., Tackett S., Kaczmarek M., Karaczyn A., Yee H., Kasprzak K.S., Niederhuber J. Regulation of hypoxia-inducible genes by ETS1 transcription factor. Carcinogenesis, 2008, vol. 29, no. 8, pp. 1493–1499. DOI: 10.1093/carcin/bgn088
- Chervona Y., Costa M. The control of histone methylation and gene expression by oxidative stress, hypoxia and metals. Free Radic. Biol. Med., 2012, vol. 53, no. 5, pp. 1041–1047. DOI: 10.1016/j.freeradbiomed.2012.07.020
- Brocato J., Costa M. Basic Mechanics of DNA Methylation and the Unique Landscape of the DNA Methylome in Metal-Induced Carcinogenesis. Crit. Rev. Toxicol., 2013, vol. 43, no. 6, pp. 493–514. DOI: 10.3109/10408444.2013.794769
- Bae S., Jeong H.-J., Cha H.J., Kim K., Choi Y.M., An I.-S., Koh H.J., Lim D.J. [et al.]. The hypoxia-mimetic agent cobalt chloride induces cell cycle arrest and alters gene expression in U266 multiple myeloma cells. International journal of molecular medicine, 2012, no. 30, pp. 1180–1186. DOI: 10.3892/ijmm.2012.1115
- Hattori S., Kamiya T., Hara H., Ninomiya M., Koketsu M., Adach T. CoCl2 Decreases EC-SOD Expression through Histone Deacetylation in COS7 Cells. Biol. Pharm. Bull., 2016, vol. 39, no. 12, pp. 2036–2041. DOI: 10.1248/bpb.b16-00551
- Chen R., Jiang T., She Y., Xu J., Li C., Zhou S., Shen H., Shi H., Liu S. Effects of Cobalt Chloride, a Hypoxia-Mimetic Agent, on Autophagy and Atrophy in Skeletal C2C12 Myotubes. Biomed. Res. Int., 2017, no. 7097580. DOI: 10.1155/2017/7097580
- Tan L., Lai X., Zhang M., Zeng T., Liu Y., Deng X., Qiu M., Li J. [et al.]. A stimuli-responsive drug release nanoplat-form for kidney-specific anti-fibrosis treatment. Biomater. Sci., 2019, vol. 7, no. 4, pp. 1554–1564. DOI: 10.1039/c8bm01297k
- Stenger C., Naves T., Verdier M., Ratinaud M.H. The cell death response to the ROS inducer, cobalt chloride, in neu-roblastoma cell lines according to p53 status. Int J. Oncol., 2011, vol. 39, no. 3, pp. 601–609. DOI: 10.3892/ijo.2011.1083
- Chimeh U., Zimmerman M.A., Gilyazova N., Li P.A. B355252, A Novel Small Molecule, Confers Neuroprotection Against Cobalt Chloride Toxicity In Mouse Hippocampal Cells Through Altering Mitochondrial Dynamics And Limiting Au-tophagy Induction. Int J. Med. Sci., 2018, vol. 15, no. 12, pp. 1384–1396. DOI: 10.7150/ijms.24702
- Kumanto M., Paukkeri E.-L., Nieminen R., Moilanen E. Cobalt (II) Chloride Modifies the Phenotype of Macrophage Activation. Basic & Clinical Pharmacology & Toxicology, 2017, no. 121, pp. 98–105. DOI: 10.1111/bcpt.12773
- Luo H.-M., Du M.-H., Lin Z.-L., Zhang L., Ma L. [et al.]. Valproic Acid Treatment Inhibits Hypoxia-Inducible Factor 1α Accumulation and Protects against Burn-Induced Gut Barrier Dysfunction in a Rodent Model. PLoS ONE, 2013, vol. 8, no. 10, pp. e77523. DOI: 10.1371/journal.pone.0077523
- Kim Y.J., Park S.J., Kim N.R., Chin H.S. Effects of Histone Deacetylase Inhibitor (Valproic Acid) on the Expression of Hypoxia-inducibleFactor-1 Alpha in Human Retinal Müller Cells. Korean J. Ophthalmol., 2017, vol. 31, no. 1, pp. 80–85. DOI: 10.3341/kjo.2017.31.1.80
- Ho J.J., Metcalf J.L., Yan M.S., Turgeon P.J., Wang J.J., Chalsev M., Petruzziello-Pellegrini T.N., Tsui A.K. [et al.]. Functional importance of Dicer protein in the adaptive cellular response to hypoxia. J. Biol. Chem., 2012, vol. 287, no. 34, pp. 29003–29020. DOI: 10.1074/jbc.M112.373365