Universal thermal climate index (UTCI) applied to determine thresholds for temperature-related mortality

View or download the full article: 

N.V. Shartova1, D.A. Shaposhnikov2, P.I. Konstantinov1, B.A. Revich2


1Moscow State University, 12 Bldg., 1 Leninskie Gory, Moscow, 119991, Russian Federation
2The Institute of Economic Forecasting of the Russian Academy of Sciences, 47 Nakhimovskii Ave., Moscow, 117418, Russian Federation


Our research goal was to examine a response in mortality among population in Arkhangelsk caused by exposure to high and low temperatures. We determined the best available mortality predictor out of air temperature and Universal Thermal Climate Index that characterizes how people feel temperature and detected threshold temperatures depending on sex, age, and cause of death; under exposure to such temperatures there was a statistically authentic increase in mortality.
We analyzed data on daily mortality among population and meteorological data collected in 1999–2016. Relative pre-ciseness in calculating attributive fractions of additional mortality during all hot and cold days was taken as a numeric criterion for selecting the best predictor. All the calculations were accomplished basing on Poisson’s regression model taking into account a non-linear dependence between mortality and weather with a distributed lag up to 21 days long.
Although people in Arkhangelsk live in a climate with cold summer and moderately cold winter, we determined attributive fractions of mortality both for cold and heat. In summer high temperatures at night have greater effects on mortality than average daily ones. Differences in temperature-related mortality depend not only on age (people who are older than 65 are more vulnerable in this respect) but also on sex. We detected lower threshold heat temperatures for males as well as greater increase in mortality among them caused by exposure to cold. It is advisable to use different predictors to obtain the maximum precise characteristics for heat and cold stress. We recommend applying UTCI to determine threshold temperatures and additional mortality.

heat waves, cold waves, mortality, population, circulatory organs diseases, cerebrovascular diseases, respiratory organs diseases, Universal Thermal Climate Index (UTCI), Arkhangelsk
Shartova N.V., Shaposhnikov D.A., Konstantinov P.I., Revich B.A. Universal thermal climate index (UTCI) applied to determine thresholds for temperature-related mortality. Health Risk Analysis, 2019, no. 3, pp. 83–93. DOI: 10.21668/health.risk/2019.3.10.eng
  1. Gasparrini A., Guo Y., Hashizume M., Lavigne E., Zanobetti A., Schwartz J., Tobias A., Tong S. [et al.]. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet, 2015, no. 386, pp. 369–375. DOI: 10.1016/S0140-6736(14)62114-0
  2. Guo Y., Gasparrini A., Armstrong B.G., Li S., Tawatsupa B., Tobias A., Lavigne E., De Sousa Zanotti Stagliorio Coe-lho M. [et al.]. Global variation in the effects of ambient temperature on mortality: A systematic evaluation. Epidemiology, 2014, vol. 25, no. 6, pp. 781–789. DOI: 10.1097/EDE.0000000000000165
  3. Revich B.A., Shaposhnikov D.A., Avaliani S.L., Rubinshtein K.G., Emelina S.V., Shiryaev M.V., Semutnikova E.G., Zakharova P.V., Kislova O.V. Hazard assessment of the impact of high temperature and air pollution on public health in Moscow. Gigiena i sanitariya, 2015, vol. 94, no. 1, pp. 36–40 (in Russian).
  4. Sheridan S.C., Dixon P. Spatiotemporal trends in human vulnerability and adaptation to heat across the United States. Anthropocene, 2017, no. 20, pp. 61–73. DOI: 10.1016/j.ancene.2016.10.001
  5. Paschalidou A., Kassomenos P., McGregor G. Analysis of the synoptic winter mortality climatology in five regions of England: Searching for evidence of weather signals. Science of the Total Environment, 2017, vol. 598, pp. 432–444. DOI: 10.1016/j.scitotenv.2017.03.276
  6. Di Napoli C., Pappenberger F., Cloke H.L. Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology, 2018, vol. 62, no. 7, pp. 1155–1165. DOI: 10.1007/s00484-018-1518-2
  7. Varakina Zh.L., Yurasova E.D., Revich B.A., Shaposhnikov D.A., Vyaz`min A.M. Air temperature impact on mortality in Arkhangelsk in 1999–2008. Ekologiya cheloveka, 2011, no. 6, pp. 28–36 (in Russian).
  8. Shaposhnikov D.V., Revich B.A., Meleshko V.P., Govorkova V.A., Pavlova T.V., Varakina Zh.L. Experience of pre-dicting of expected excess mortality due to climate change: a case study in Arkhangelsk. Ekologiya cheloveka, 2013, no. 8, pp. 17–22 (in Russian).
  9. Revich B.A., Shaposhnikov D.A., Anisimov O.A., Belolutskaia M.A. Heat waves and cold spells in three arctic and subarctic cities as mortality risk factors. Gigiena i sanitariya, 2018, vol. 97, no. 9, pp. 791–798 (in Russian).
  10. Konstantinov P.I., Kukanova E.A. Gorodskie ostrova tepla Rossiiskoi Federatsii: osnovnye kharakteristiki i problem izucheniya [Urban heat islands in the Russian Federation: basic features and issues related to examining them]. ENVIROMIS-2014: materialy Mezhdunarodnoi konferentsii i shkoly molodykh uchenykh po izmereniyam, modelirovaniyu i informatsionnym sistemam dlya izucheniya okruzhayushchei sredy. Tomsk, 2014, vol. 29, pp. 162–164 (in Russian).
  11. Jendritzky G., Havenith G., Weihs P., Batchvarova E. Towards a Universal Thermal Climate Index UTCI for assessing the thermal environment of the human being. Final Report COST Action 730, 2009, 6 p.
  12. Matzarakis A., Endler C. Climate change and thermal bioclimate in cities: impacts and options for adaptation in Frei-burg, Germany. International Journal of Biometeorology, 2010, vol. 54, no. 4, pp. 479–483. DOI: 10.1007/s00484-009-0296-2
  13. Gasparrini A., Leone M. Attributable risk from distributed lag models. BMC Medical Research Methodology, 2014. Available at:https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-1... (12.03.2018). DOI: 10.1186/1471-2288-14-55
  14. Shartova N.V., Shaposhnikov D.A., Konstantinov P.I., Revich B.A. Air temperature and mortality: heat thresholds and population vulnerability study in Rostov-on-don. Fundamental'naya i prikladnaya klimatologiya, 2019, vol. 2, pp. 66–94. DOI: 10.21513/2410-8758-2019-2-66-94 (in Russian).
  15. Gasparrini A., Armstrong B., Kenward M.G. Distributed lag non-linear models. Statistics in Medicine, 2010, vol. 29, pp. 2224–2234. DOI: 10.1002/sim.3940
  16. Tobías A., Armstrong B.G., Gasparrini A. Brief Report: Investigating Uncertainty in the Minimum Mortality Tempera-ture. Methods and Application to 52 Spanish Cities. Epidemiology, 2017, vol. 28, pp. 72–76. DOI: 10.1097/EDE.0000000000000567
  17. Linaresa C., Diaz J. Impact of heat waves on daily mortality in distinct age groups. Gaceta Sanitaria, 2008, vol. 22, no. 2, pp. 115–119.
  18. Robine J.M., Michel J.P., Herrmann F.R. Excess male mortality and age-specific mortality trajectories under different mortality conditions: A lesson from the heat wave of summer 2003. Mechanisms of Ageing and Development, 2012, vol. 133, no. 6, pp. 378–386. DOI: 10.1016/j.mad.2012.04.004
  19. Urban A., Kyselý J. Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. International Journal of Environmental Research and Public Health, 2014, vol. 11, no. 1, pp. 952–967. DOI: 10.3390/ijerph110100952
  20. FallahGhalhari G., Mayvaneh F. Effect of air temperature and universal thermal climate index on respiratory diseases mortality in Mashhad, Iran. Archives of Iranian Medicine, 2016, vol. 19, no. 9,pp. 618–624. DOI: 10161909/AIM.004
  21. Oudin Åström D., Ebi K.L., Vicedo-Cabrera A.M., Gasparrini A. Investigating changes in mortality attributable to heat and cold in Stockholm, Sweden. International Journal of Biometeorology, 2018, vol. 62, no. 9, pp. 1777–1780. DOI: 10.1007/s00484-018-1556-9
  22. Zhang Y., Xiang Q., Yu Y., Zhan Z., Hu K., Ding Z. Socio-geographic disparity in cardiorespiratory mortality burden attributable to ambient temperature in the United States. Environmental Science and Pollution Research, 2019, vol. 26, no. 1, pp. 694–705. DOI: 10.1007/s11356-018-3653-z
  23. Yang J., Yin P., Zhou M., Ou C.Q., Li M., Li J., Liu X., Gao J. [et al.]. The burden of stroke mortality attributable to cold and hot ambient temperatures: epidemiological evidence from China. Environ. Int., 2016, vol. 92–93, pp. 232–238. DOI: 10.1016/S0140-6736(14)62114-0
  24. Yang J., Zhou M., Ou C.Q., Yin P., Li M., Tong S., Gasparrini A., Liu X. [et al.]. Seasonal variations of temperature-related mortality burden from cardiovascular disease and myocardial infarction in China. Environmental Pollution, 2017, vol. 224, pp. 400–406. DOI: 10.1016/j.envpol.2017.02.020
  25. Smirnova M.D., Fofanova T.V., Ageev F.T., Blankova Z.N., Vitsenya M.V., Tsybulsckaya T.V., Neverova E.F., Samsonova N.S. Comparison of efficacy and safety of losartan fixed combination with amlodipine or hydrochlorothiazide in hypertensive patients during heatwaves. Kardiologicheskii vestnik, 2017, vol. 12, no.2, pp. 30–39 (in Russian).
  26. Smirnova M.D., Ageev F.T., Svirida O.N., Kuz'mina A.E., Galaninskii P.V., Shatalina L.S. Vliyanie povysheniya temperatury vozdukha na elektrolitnyi balans, gemodinamiku i kachestvo zhizni bol'nykh arterial'noi gipertoniei i vozmozhnost' profilakticheskogo ispol'zovaniya preparata Panangin [Influence exerted by temperature rise on electrolyte balance, hemodynamics, and life quality of people who suffer from primary hypertension; possible preventive effects produced by Panangin]. Russkii meditsinskii zhurnal. Meditsinskoe obozrenie, 2013, vol. 21, no. 3, pp. 159–164 (in Russian).

You are here