Energy potential of mitochondria under led lighting and risks of eyes diseases

View or download the full article: 
614/5: 644.36

V.A. Kaptsov1, V.N. Deinego2, V.N. Ulasyuk3


1All-Russian Research Institute of Railway Hygiene, 1 Pakgauznoe shosse Str., Bldg. 1, Moscow, 125438, Russian Federation
2 «Biolumen» scientific and technical center, 8 Mira av., Fryazino, Moscow, 141195, Russian Federation
3 «Platan Scientific Research Institute with In-House Plant» PLC, 2 Zavodskoy lane, Fryazino, 141190, Russian Federation


Disorders in refraction, myopia and other eye disorders lead to a decrease in efficiency of any activity and impose certain limitations on educational and working capabilities of economically active population. As light denaturation grows, fatigue caused by performing test visual efforts also increases. The lowest decrease in physiological and mental parameters occurs when a person works under natural luminance, and the greatest one, under completely artificial luminance. Artificial light sources, as opposed to an even sunlight spectrum, have peaks and notches in photon flow under specific wave lengths.

It is shown in the paper that a drastic decrease in spectral-energy characteristics occurs in red light area with wave length 670 nm as compared to sunlight spectrum. The authors consider how 670 nm red light deficiency influences visual analyzer cells and mitochondria in particular. A theory that focuses on mitochondria aging states that oxidative stress caused by DNA mutations in mitochondria is associated with a decrease in adenosine triphosphate (ATP) production leading to cell degeneration. A rate at which this degradation develops is related to metabolic demands of a body, progressing inflammation in the outer retina, macrophages penetration and cells loss; as a result, eye sight deteriorates. A mechanism of a decrease in efficiency of ATP-synthesizing structures is examined within "670 nm light – water structural properties – efficiency of mitochondria rotary engine operations" cause-and-effect chain. The authors substantiate the necessity to synthesize red 670 nm luminopfor and to optimize LED lighting in this spectrum area.

red 670 nm light, water structure, ATP synthesis efficiency, energy potential of mitochondria, LED lighting
Kaptsov V.A., Deinego V.N., Ulasyuk V.N. Energy potential of mitochondria under led lighting and risks of eyes diseases. Health Risk Analysis, 2019, no. 2, pp. 175–184. DOI: 10.21668/health.risk/2019.2.19.eng
  1. Erisman F.F. Izbrannye proizvedeniya [Selection]. Moscow, Medgiz Publ., 1959, vol. 1, 390 p.
  2. Jung S.-K., Lee J.H., Kakizaki H., Jee D. Prevalence of Myopia and its Association with Body Stature and Educational Level in 19-Year-Old Male Conscripts in Seoul, South Korea. Invest Ophthalmol Vis Sci, 2012, vol. 53, no. 9, pp. 5579–5583. DOI: 10.1167/iovs.12-10106
  3. Kaptsov A., Deinego V.N. Fotobiologicheskaya bezopasnost' i tekhnicheskaya politika na svetodiodnom rynke [Photo-biological safety and technical policy on the LED market]. Energosovet, 2016, vol. 46, no. 4, pp. 42–46.
  4. Markova E.Y., Pron'ko N.A., Aminulla L.V., Venediktovа L.V., Bezmelnitsyna L.Y. To the Question of School Myopia. Oftal'mologiya, 2018, vol. 15, no. 1, pp. 87–91. DOI: 10.18008/1816-5095-2018-1-87-9
  5. Medvedev A.V. Hygienic methods of prevention of emergence and progressing of school short-sightedness. Zdorov'e i obrazovanie v XXI veke, 2013, vol. 15, no. 1–4, pp. 309–311.
  6. Konferentsiya «Miopiyu pod kontrol'. Rossiiskii i zarubezhnyi opyt»: osnovnye vyvody [The Conference entitled "To control myopia. Russian and foreign experience": basic conclusions], 2018. Available at: https: // (29.06.2018).
  7. Skobareva Z.A., Teksheva L.M. Biologicheskie aspekty gigienicheskoi otsenki estestvennogo i iskustvennogo osveshcheniya [Hygienic assessment of natural and artificial lighting: biological aspects]. Svetotekhnika, 2003, no. 4, pp. 7–13.
  8. Goncharov N.P., Kireev N.N. Zritel'naya rabotosposobnost' pri estestvennom i ikusstvennom osveshchenii [Visual effi-ciency under natural and artificial lighting]. Svetotekhnika, 1977, no. 9, pp. 5–7.
  9. Ying-Ying H., Sharma S.K, Carroll J., Hamblin M.R. Biphasic dose response in low level light therapy – an update. Dose-Response: An International Journal, 2011, vol. 9, no. 4, pp. 602–618. Available at: http: //scholar¬
    dose_res¬ponse/vol9/iss4/11 (29.06.2018). DOI: 10.2203/dose-response.11-009.Hamblin
  10. Konev S.V., Volotovskii I.D. Fotobiologiya [Photobiology]. Minsk, Belarusian State University Publ., 1979, 384 p.
  11. Agroskin L.S., Papayan G.V. Tsitofotometriya. Apparatura i metody analiza kletok po svetopogloshcheniyu [Cytopho-tometry. Devices and techniques for analyzing light-absorbing cells]. Leningrad, Nauka Publ., 1977, 273 p.
  12. Kaptsov V.A., Deinego V.N. Analytical review: Light-biological safety and risks of eye diseases among school child in classrooms with led light sources? Proceedings of 3rd Global Pediatric Ophthalmology Congress 2018. Journal of Clinical & Experimental Ophthalmol, London, 2018, vol. 9, pp. 58–59.
  13. Kaptsov V.A., Deinego V.N. Immunnaya sistema i iskusstvennaya svetovaya sreda [Immune system and artificial lighting]. Allergologiya i immunologiya, 2015, vol. 16, no. 3, pp. 253–258.
  14. Deinego V.N., Kaptsov V.A., Soroka A.I. Influence of light and physical fields on risk of disharmonization of melatonin synthesis in the pineal gland. Health Risk Analysis, 2014, no. 2, pp. 30–41. DOI: 10.21668/health.risk/2014.2.04.eng
  15. Deinego V.N., Kaptsov V.A. Visual hygiene in LED lighting. Modern scientific imaginations. Gigiena i sanitariya, 2014, vol. 93, no. 5, pp. 54–58.
  16. Deinego V.N., Kaptsov V.A. Disorders in melanopsin effect of pupil constriction as a risk factor causing eye diseases. Health Risk Analysis, 2017, no. 1, pp. 132–148. DOI: 10.21668/health.risk/2017.1.15.eng
  17. Boldyrev A.A. Razgadyvaya krossvord prirody. Retsenziya na knigu Gil'berta Linga «Fizicheskaya teoriya zhivoi kletki (nezamechennaya revolyutsiya)» Sankt-Peterburg: Nauka, 2008 [Doing crosswords proposed by nature. A review on a book by Gilbert Ling "A physical theory of the living cell (the hidden revolution) " Saint Petersburg: Nauka 2008]. Biokhimiya, 2009, vol. 74, no. 6, pp. 860–862.
  18. Electron transport chain. Wikipedia. The free encyclopedia, 2002. Available at: https: //¬ (30.06.2018).
  19. Dimroth P., Wang H., Grabe M., Oster G. Energy transduction in the sodium F-ATPase of Propionigenium modestum. Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 4924–4929.
  20. Oster G., Wang H. Reverse engineering a protein: the mechanochemistry of ATP synthas. Biochimica et Biophysica Acta Bioenergetics, 2000, vol. 1458, no. 2, pp. 482–510.
  21. Gardiner C. Stochastic Methods. A handbook for the Natural and Social sciences. New York, Springer Publ, 2009, vol. 18, 447 p.
  22. Risken H. The Fokker-Planck Equation. Methods of Solution and Applications. Berlin, Springer-Verlag Publ., 1989, 485 p.
  23. Kinosita Jr. K., Yasuda R., Noji H., Adachi K. A rotary molecular motor that can work at near 100 % efficiency. Philos. Trans. R. Soc. Lond. B Biol. Sci, 2000, vol. 355, pp. 473–489. DOI: 10.1098/rstb.2000.0589
  24. Sommer A.P., Haddad M.Kh., Fecht H.-J. Light Effect on Water Viscosity: Implication for ATP Biosynthesis. Sci. Rep, 2015, vol. 5, 335 p. DOI: 10.1038/srep12029
  25. Sivapathasuntharam C., Sivaprasad S., Hogg C., Jeffery G. Aging retinal function is improved by near infrared light (670 nm) that is associated with corrected mitochondrial decline. Neurobiol Aging, 2017, vol. 52, pp. 66–70.
  26. Final resolution of the 3rd Global Pediatric Congress, London 2018. Available at: https: // (30.06.2018).
  27. Koshits I.N., Egemberdiev M.B. O nauchnykh itogakh III Global'nogo kongressa po detskoi oftal'mologii [On scientific results of the III Global congress on children ophthalmology]. Pole zreniya, 2018, no. 3, pp. 24–25.
  28. Kaptsov V.A., Deinego V.N. Ulasyuk V.N. Poluprovodnikovye istochniki belogo sveta s biologicheski adekvatnym spektrom izlucheniya [Semi-conductor white light sources with biologically adequate irradiation spectrum]. Glaz, 2018, vol. 119, no. 1, pp. 25–38.

You are here