Test-model and quantitative rdds criterion index which are applied to estimate antimicrobic potential of nanomaterials used for water purification and treatment: Substantiation and metrologic assessment

View or download the full article: 
628.19: [579.66: 620.3]

N.V. Dudchik, E.V. Drozdova, S.I. Sychik


Scientific-practical Hygiene Center, 8 Akademicheskaya Str., Minsk, 220012, Republic of Belarus


To reduce population health risks which occur when people consume drinking water from centralized water supply systems is a vital medical-biologic and technical problem. It can be sold, among other things, via development and application of new materials for water purification and treatment. Some natural and artificial nanomaterials have antimicrobic properties as they can eliminate microorganisms of various taxonomy (bacteria, yeast-like and mold fungi) and bacterial biofilms. However, certain results which were obtained when antimicrobic potential of nanomaterials was estimated are controversial; they are frequently only qualitative or semi-quantitative due to absence of a standard test protocol and well-grounded criterial assessment apparatus. So, the goal of this paper was to give methodological grounds and to create a unified and standardized test-model; to optimize parameters of a procedure and to substantiate a system of criteria applied for quantitative assessment of antimicrobic activity which is characteristic for nanomaterials applied for water purification and treatment.

The research was performed on the following objects: samples of nanomaterials based on titanium dioxide which were applied for water purification and treatment. The authors have substantiated a test-model, suggested a criterion index RDDS, made up a standard test protocol for quantitative assessment of antimicrobic potential possessed by nanomaterials.

The developed technology has been tested on samples of nanomaterials based on titanium dioxide. We have calculated and assessed metrological parameters of the procedure (repeatability standard deviation and repeatability limit) which conform to the requirements existing for similar procedures when confidence probability is assumed to be equal to 95 %; such requirements are fixed by the ISO (International Standardization Organization) and correspond to the GLP (Good Laboratory Practice) principles. The relevance of the test-model was validated; this relevance provides an objective quantitative assessment of antimicrobic potential which is possessed by materials applied for disinfection of water objects contaminated with microbiota of various taxonomy, as well as for control and prevention of bacterial infections which can be communicated with water.

nanomaterials, test-model, antimicrobic potential, quantitative criterion index RDDS, metrological assessment
Dudchik N.V., Drozdova E.V., Sychik S.I. Test-model and quantitative RDDS criterion index which are applied to estimate antimicrobic potential of nanomaterials used for water purification and treatment: substantiation and metrologic assessment. Health Risk Analysis, 2018, no. 3, pp. 104–111. DOI: 10.21668/health.risk/2018.3.11.eng
  1. Khmel'nitskii I.K., Larin A.V., Luchinin V.V. Sovremennoe sostoyanie normativno-metodicheskogo obespecheniya be-zopasnosti nanotekhnologii v Rossiiskoi Federatsii [The current state of regulatory and methodical support of nanotechnology safety in the Russian Federation]. Biotekhnosfera, 2015, vol. 41, no. 5, pp. 95–103 (in Russian).
  2. Gmoshinskii I.V., Khotimchenko S.A. Nanotekhnologii v proizvodstve pishchevykh produktov: otsenka riskov [Nanotechnologies applied in food products manufacturing: risk assessment]. Voprosy pitaniya, 2014, vol. 83, no. S3, pp. 174 (in Russian).
  3. Onishchenko G.G., Tutel'yan V.A., Gmoshinskii I.V., Khotimchenko S.A. Razvitie sistemy otsenki bezopasnosti i kontrolya nanomaterialov i nanotekhnologii v Rossiiskoi Federatsii [Development of the system for nanomaterials and nanotechnology safety in Russian Federation]. Gigiena i sanitariya, 2013, № 1, pp. 4–11 (in Russian).
  4. Kazak A.A., Stepanov E.G., Gmoshinskii I.V., Khotimchenko S.A. Sravnitel'nyi analiz sovremennykh podkhodov k otsenke riskov, sozdavaemykh iskusstvennymi nanochastitsami i nanomaterialami [Comparative analysis of modern approaches to risk estimation from artificially created nanoparticles and nanomaterials]. Voprosy pitaniya, 2012, no. 4, pp. 11–17 (in Russian).
  5. Tutel'yan V.A., Khotimchenko S.A., Gmoshinskii I.V., Shumakova A.A., Raspopov R.V. Kompleksnaya mediko-biologicheskaya otsenka bezopasnosti nanomaterialov: informatsionno-analiticheskaya i eksperimental'naya sostavlyayushchie [Comprehensive medical-biological evaluation of nanomaterials safety: communicatory-analytical and experimental constituents]. Zdorov'e naseleniya i sreda obitaniya, 2011, no. 5, pp. 15–18 (in Russian).
  6. Saad N.A., Jwad E.R. Investigation of addition titanium dioxide on general properties of polycarbonate. Open Access Library Journal, 2018, vol. 5, no. 1, pp. 1–11. DOI: 10.4236/oalib.1104229
  7. Akhavan O. Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J. Colloid Interface Sci., 2009, no. 336, pp. 117–124. DOI: 10.1016/j.jcis.2009.03.018
  8. Sahin Y.M., Yetmez M., Oktar F.N., Gunduz O., Agathopoulos S., Andronescu E., Ficai D., Sonmez M., Ficai A. Nanostructured biomaterials with antimicrobial properties. Curr. Med. Chem., 2014, vol. 21, no. 29, pp. 3391–3404.
  9. Ng A.M., Chan C.M., Guo M.Y., Leung Y.H., Djurisic A.B., Hu X., Chan W.K., Leung F.C., Tong S.Y. Antibacterial and photocatalytic activity of TiO2 and ZnO nanomaterials in phosphate buffer and saline solution. Appl. Microbiol. Biotechnol., 2013, vol. 97, no. 12, pp. 5565–5573. DOI: 10.1007/s00253-013-4889-4897
  10. Huang X., Bao X., Liu Y., Wang Z., Hu Q. Catechol-functional chitosan/silver nanoparticle composite as a highly effec-tive antibacterial agent with species-specific mechanisms. Sci. Rep., 2017, vol. 12, no. 7 (1). DOI: 10.1038/s41598-017-02008-4
  11. Duran N., Duran M., de Jesus M.B., Seabra A.B., Favaro W.J., Nakazato G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine, 2016, no. 12 (3), pp. 789–99. DOI: 10.1016/j.nano.2015.11.016
  12. Bukina Yu.A., Sergeeva E.A. Antibakterial'nye svoistva i mekhanizm bakteritsidnogo deistviya nanochastits i ionov serebra [Antibacterial properties and bactericidal effects exerted by silver nanoparticles and ions]. Vestnik Kazanskogo tekhno-logicheskogo universiteta, 2012, no. 14, pp. 170–171 (in Russian).
  13. Franci G., Falanga A., Galdiero S., Palomba L., Rai M., Morelli G., Galdiero M. Silver nanoparticles as potential anti-bacterial agents., 2015, vol. 20, no. 5, pp. 8856–8874. DOI: 10.3390/molecules20058856
  14. Gajjar P., Pettee B., Britt D.W., Huang W., Johnson W.P., Anderson A.J. Antimicrobial activities of commercial na-noparticles against an environmental soil microbe Pseudomonas putida KT2440. J. of biological Engineering, 2009, vol. 3, no. 9, pp. 420–428. DOI: 10.1186/1754-1611-3-9
  15. Raghunath A., Perumal E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int. J. Antimicrob. Agents., 2017, vol. 49, no. 2, pp. 137–152. DOI: 10.1016/j.ijantimicag.2016.11.011
  16. Li J., Qiao Y., Zhu H., Meng F., Liu X. Existence, release, and antibacterial actions of silver nanoparticles on Ag-PIII TiO-films with different nanotopographies. Intern. J. of Nanomedicine, 2014, vol. 9, no. 1, pp. 3389–3402. DOI: 10.2147/IJN.S63807
  17. Rudramurthy G.R., Swamy M.K., Sinniah U.R., Ghasemzadeh A. Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules, 2016, vol. 21, no. 7, pp. 836. DOI: 10.3390/molecules21070836
  18. Mamonova I.A., Babushkina I.V., Norkin I.A., Gladkova E.V., Matasov M.D., Puchin'yan D.M. Bio¬lo¬gi¬ches¬koe deistvie nanochastits metallov i ikh oksidov na bakterial'nye kletki [Biological activity of metal nanoparticles and their oxides and their effect on bacterial cells]. Rossiiskie nanotekhnologii, 2015, vol. 10, no. 1–2, pp. 106–110 (in Russian).
  19. Zhang L., Pornpattananangku D., Hu C.M., Huang C.M. Development of Nanoparticles for Antimicrobial Drug Deliv-ery. Current Medicinal Chemistry, 2010, no. 17, pp. 585–594.
  20. Grumezescu A.M., Chifiriuc C.M. Prevention of microbial biofilms - the contribution of micro and nanostructured materials. Curr. Med. Chem., 2014, vol. 21, no. 29, pp. 3311–3317.
  21. Gladkikh P.G. Effekt nanochastits serebra v otnoshenii bioplenok mikroorganizmov (literaturnyi obzor) [Effects exerted by silver nanoparticles on biofilms made up of microorganisms (literature review)]. Vestnik novykh meditsinskikh tekhnologii. Elektronnoe izdanie, 2015, vol. 9, no. 1, pp. 3–4 (in Russian).
  22. Wu D., Fan W., Kishen A., Gutmann J.L., Fan B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J. Endod, 2014, vol. 40, no. 2, pp. 285–290. DOI: 10.1016/j.joen.2013.08.022
  23. Li Q., Mahendra S., Lyon D.Y., Brunet L., Liga M.V., Li D., Alvarez P.J. Antimicrobial nanomaterials for water dis-infection and microbial control: Potential applications and implications. Water research, 2008, vol. 42, no. 18, pp. 4591–4602. DOI: 10.1016/j.watres.2008.08.015
  24. Chong M.N., Jin B., Chow C.W.K., Saint C. Recent developments in photocatalytic water treatment technology: a review. Water Research, 2010, vol. 44, no. 10, pp. 2997–3027. DOI: 10.1016/j.watres.2010.02.039
  25. Tikhomirova E.I., Vedeneeva N.V., Nechaeva O.V., Anokhina T.V. Ochistka poverkhnostnykh vod s ispol'zovaniem innovatsionnykh fil'truyushchikh zagruzok kompleksnogo deistviya [Purification the surface waters with using the innovative complex action filters]. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2016, vol. 18, no. 2 (3), pp. 812–816 (in Russian).
  26. Drozdova E.V., Dudchik N.V., Buraya V.V. Razrabotka metodicheskikh podkhodov k otsenke nanostrukturirovannykh materialov na osnove dioksida titana dlya ochistki vody ot khimicheskikh i biologicheskikh zagryaznenii [Development of methodological approaches to assessment of nano-structured materials based on titanium dioxide and applied for water purification from chemical and biological contamination]. Rol' i mesto gigienicheskoi nauki i praktiki v formirovanii zdorov'ya natsii: sbornik tezisov mezhvuzovskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem [Role played and place occupied by hygienic science and practices in creation of a nation's health: a collection of theses issued at an interuniversity theoretical and practical conference with international participation]. Moscow, 2014, pp. 76–78 (in Russian).
  27. Vedeneeva N.V., Zamatyrina V.A., Tikhomirova E.I., Anokhina T.V., Istrashkina M.V., Bobyrev S.V. Innovatsionnye metody ochistki poverkhnostnykh i stochnykh vod s ispol'zovaniem nanostrukturirovannykh sorbentov [Innovative methods for cleaning the surface and waste water using nanostructured sorbents]. Innovatsionnaya deyatel'nost', 2014, vol. 2, no. 1, pp. 26–32 (in Russian).
  28. Kydralieva K.A., Terekhova V.A., Poromov A.A., Kulyabko L.S., Uchanov P.V., Fedoseeva E.V., James R.A. Anti-mikrobnye produkty nanotekhnologii i dezinfektsiya vodnykh sred (obzor) [Antimicrobial products of nanotechnologies and disin-fection of water environments (review)]. Voda: khimiya i ekologiya, 2017, no. 10, pp. 45–55 (in Russian).
  29. Cavassin E.D., de Figueiredo L.F., Otoch J.P., Seckler M.M., de Oliveira R.A., Franco F.F., Marangoni V.S., Zucolotto V., Levin A.S., Costa S.F. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J. Nanobiotechnology, 2015, vol. 13, no. 64. Available at: https://jnanobiotechnology.biomed-central.com/articles/10.1186/s12951-01... (16.06.2018).
  30. Dudchik N.V., Sychik S.I., Drozdova E.V., Kupreeva O.V. Fotokataliticheskaya inaktivatsiya populyatsii Escherichia coli i Staphylococcus aureus pod vozdeistviem strukturirovannykh nanomaterialov na osnove dioksida titana [Photocatalytic inactivation of Escherichia coli and Staphylococcus aureus populations under exposure to structured nanomaterials based on titanium dioxide]. Donozologiya i zdorovyi obraz zhizni, 2015, vol. 16, no. 1, pp. 28–31. (in Russian).
  31. Safavi K., Mortazaeinezahad F., Esfahanizadeh M., Asgari M.J. In Vitro antibacterial activity of nanomaterial for using in tobacco plants tissue culture. World Academy of Science, Engineering and Technology (Conference Paper), 2011, no. 55, pp. 372–373. DOI: 10.13140/2.1.1236.8007
  32. Deryabin D.G., Aleshina E.S., Deryabina T.D., Efremova L.V. Biologicheskaya aktivnost' ionov, nano- i mikrochastits Cu i Fe v teste ingibirovaniya bakterial'noi biolyuminestsentsii [Biological Activity of Ions, Nano- and Micro-Sized Cu and Fe Particles Determined with a Bioluminescence Inhibition Assay]. Nanotekhnologii: razrabotka, primenenie – XXI vek, 2012, vol. 4, no. 1, pp. 28–33 (in Russian).
  33. Huang K.S., Shieh D.B., Yeh C.S., Wu P.C., Cheng F.Y. Antimicrobial applications of water-dispersible magnetic na-noparticles in biomedicine. Curr. Med. Chem., 2014, vol. 21, no. 29, pp. 3312–3322.
  34. Rizzello L., Cingolani R., Pompa P.P. Nanotechnology tools for antibacterial materials. Nanomedicine (Lond), 2013, vol. 8, no. 5, pp. 807–821. DOI: 10.2217/nnm.13.63
  35. Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine, 2017, vol. 14, no. 12, pp. 1227–1249. DOI: 10.2147/IJN.S121956
  36. Dudchik N.V., Drozdova E.V., Sychik S.I. Al'ternativnye biologicheskie test-modeli v otsenke riska vozdeistviya faktorov sredy obitaniya [Alternative biological test models for risk assessment of environmental factors]. Minsk, Belorusskii nauchno-issledovatel'skii institut transporta «Transtekhnika» Publ., 2015, 194 p. (in Russian).
  37. Dudchik N.V., Shevlyakov V.V. Prokarioticheskie test-modeli dlya otsenki biologicheskogo deistviya i gigienicheskoi reglamentatsii faktorov okruzhayushchei sredy [Prokaryotic test-models for assessing biological effects and hygienic standardi-zation of environmental factors]. Sovremennye metodologicheskie problemy izucheniya, otsenki i reglamentirovaniya faktorov okruzhayushchei sredy, vliyayushchikh na zdorov'e cheloveka: materialy mezhdunarodnogo Foruma nauchnogo soveta Rossiiskoi Federatsii po ekologii cheloveka i gigiene okruzhayushchei sredy [Contemporary methodological issues related to examination, assessment, and standardization of environmental factors which influence people's health: materials of the international Conference held by the RF scientific council on human ecology and environmental hygiene]. In: Yu.A. Rakhmanin ed. Moscow, 2016, vol. 1, pp. 167–189 (in Russian).
  38. Mel'nikova L.A., Dudchik N.V., Kolomiets N.D. Izuchenie effektivnosti razlichnykh metodov dezobrabotki [Research on efficiency of various disinfection techniques] Khranenie i pererabotka sel'khozsyr'ya, 2003, no. 8, pp. 98–99 (in Russian).

You are here