Determination of nanoscale particles in the air of working zone at the metallurgical production

View or download the full article: 

Т.S. Ulanova, М.V. Antipyeva, М.I. Zabirova, М.V. Volkova


FBSI "Federal Scientific Center for Medical and Preventive Health Risk Management Technologies", Russian Federation, Perm, 82, Monastyrskaya St., 614045


The results of studies of the air of working zone at the metallurgical production on the example of Avisma OJSC (Berezniki, the Perm Territory) for the content of nanoscale particles are specified. The maximum nanoparticles concentration in the range of 13523–28609 mln./m3 is determined at the working place of the titanium production smelter with the maximum size of particles of 10–15 nm. At the working place in the administrative building (reference working place) the maximum concentration is determined within the range of 524–1000 mln./m3; the maximum size of nanoparticles is 20 nm. It was established that the number concentration of nanoparticles at the reference working places (administration of Avisma OJSC) is significantly lower than at the working places of main production processes. The presented studies can be used as the additional factors in the assessment of labor conditions and occupational risk during the manufacture and use of materials containing nanoparticles as well as the production processes with the nanoparticles formation.

nanoparticles (< 100 nm), number concentration, nanoparticle size distribution
Ulanova Т.S., Antipyeva М.V., Zabirova М.I., Volkova М.V. Determination of nanoscale particles in the air of working zone at the metallurgical production. Health Risk Analysis, 2015, no. 1, pp. 77-81. DOI: 10.21668/health.risk/2015.1.10.eng
  1. Diffuzionnyj ajerozol'nyj spektrometr. Model' 2702. Rukovodstvo po jekspluatacii 66334978.002.000RJe [Diffusion aerosol spectrometer. Model 2702. Operation manual 66334978.002.000RE]. OOO «AjeroNanoTeh» g. Moskva, 2013. Available at: http://ru.aeronano¬ aerozolnyyspektrometr.
  2. Onishhenko G.G. Organizacija nadzora za oborotom nanomaterialov, predstavljajushhih potencial'nuju opasnost' dlja zdorov'ja cheloveka [Organization of supervision over the turnover of nanomaterials posing potential danger for the health of humans]. Gigiena i sanitarija, 2011, no 2, рр. 4–9.
  3. Zajceva N.V., Zemljanova M.A., Zvezdin V.N., Saenko E.V. Toksikologo-gigienicheskaja ocenka bezo-pasnosti vodnoj suspenzii nanodispersnogo dioksida kremnija, sintezirovannogo metodom zhidkokristallicheskogo templantirovanija [Toxicological and hygienic assessment of safety of the aqueous suspension of nanodisperse silicon dioxide synthesized by the liquid-crystalline templating method]. Analiz riska zdorov'ju, 2013, no 1, рр. 65–72.
  4. Chen Z., Meng H., Xing G. et al. Acute toxicological affects of copper nanoparticles in vivo. The journal of physical chemistry. Toxicology letters, 2006, no 163, рр. 109–120.
  5. Chiu - Wing Lam, James John T, McCluskey R. et al. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Science, 2003, no 77, рр. 126–134.

You are here