Effects of subchronic exposure manganese oxide nanoparticles on the central nervous system, lipid peroxidation and antioxidant enzymes in rats

View or download the full article: 
UDC: 
615.9, 614.7
Authors: 

N.V. Zaitseva1, М.А. Zemlyanova1, V.N. Zvezdin1, Т.I. Akafyeva2, D.L. Mazunina2, А.А.Dovbish1

Organization: 

1 FBSI “Federal Scientific Center for Medical and Preventive Health Risk Management Technologies”, Russian Federation, Perm, 82, Monastyrskaya St., 614045,
2 FSBEI HPE «Perm State National Research University", Russian Federation, Perm, 15, Bukireva St., 614990

Abstract: 

Nanodisperse particles of manganese oxide (MnO) by virtue of high reactivity are widely used as an active substance in the manufacture of sorbents and catalysts used in the liquid waste disposal technology. Receipt of MnO in the composition of wastewater into free waters, which are sources of drinking water supply, is a potential danger to human health. However, the consequences of the MnO effects on the human body by ingestion with drinking water have hardly been studied. The study estimated changes in activity indices of lipid peroxidation and antioxidant defense, balance of neurotransmitters in the central nervous system in the blood serum after oral gavage Wistar aqueous suspension of nanodiperse MnO particle in size of 15-29 nm to the rats. Doses of MnO 260, 50, 10 and 5 mg / kg body weight / day was administered daily for 7 days for 90 days. It is shown that the MnO causes lipid peroxidation (by raising of lipid hydroperoxides and malondialdehyde in the serum) and reduced activity antioksidatnoy system (bu reducing the total antioksidatnogo status and Cu / Zn-superoxide dismutase in the serum). It is found a violation of the ratio of neurotransmitter glutamate to increase and decrease the level of γ-aminobutyric acid in the blood serum. At a dose of 5 mg / kg per day nanodisperse MnO does not cause these effects. Found negative effects are confirmed by morphological changes in the brain tissue (in the cerebral hemisphere and cerebellum).

Keywords: 
manganese oxide, nanoparticles, brain. neurotoxicity, ox stress, antioxidant activity
Zaitseva N.V., Zemlyanova М.А., Zvezdin V.N., Akafyeva Т.I., Mazunina D.L., Dovbish А.А. Effects of subchronic exposure manganese oxide nanoparticles on the central nervous system, lipid peroxidation and antioxidant enzymes in rats. Health Risk Analysis, 2014, no. 4, pp. 66-77
References: 
  1. Glanc S. Mediko-biologicheskaja statistika: per. s angl. [Biomedical Statistics: translated from English]. – M.: Praktika, 1998. – 459 s.
  2. Greg S., Sing K. Adsorbcija, udel'naja poverhnost', poristost' [Adsorption, specific surface, porosity]. – M.: Mir, 1984. – 306 s.
  3. Onishhenko G.G. Strategija bezopasnosti nanoindustrii [Nanoindustry safety strategy]. Zdorov'e naselenija i sreda obitanija. – 2011. – № 5. – S. 4–8.
  4. Zajceva N.V., Zemljanova M.A., Zvezdin V.N., Saenko E.V., Tarantin A.V., Mahmudov R.R., Lebedin-skaja O.V., Melehin S.V., Akaf'eva T.I. Toksikologo-gigienicheskaja ocenka bezopasnosti nano i mikrodispersnogo oksida marganca (III, IV) [Toxicological and hygienic safety assessment of nano and ultrafine manganese oxide (III, IV)]. Voprosy pitanija. – 2012. – T. 81, № 5. – S. 13–19.
  5. Afeseh Ngwa H., Kanthasamy A., Gu Y., Fang N. Manganese nanoparticle activates mitochondrial de-pendent apoptotic signaling and autophagy in dopaminergic neuronal cells. Toxicol Appl Pharmacol. – 2011. –
    Vol. 256. – P. 227–240.
  6. Frick R, Müller-Edenborn B, Schlicker A, Rothen-Rutishauser B. Comparison of manganese oxide nanopar-ticles and manganese sulfate with regard to oxidative stress, uptake and apoptosis in alveolar epithelial cells // Toxicol Lett. – 2011. – Vol. 205. – P. 163–172.
  7. Srittenden P.L, Filipov N.M. Manganese–induced potentiation of in vitro proinflammatory cytokine pro-duction by activated microglial cells is associated with persistent activation of p38 MAPK // Toxicology in Vitro. – 2008. – Vol. 22. – P. 18–27.
  8. Diana M. Neurotoxicity of manganese oxide nanomaterials // J. Nanopart. Res. – 2009. – Vol. 11. – P. 1957–1969.
  9. Elder A., Gelein R., Silva V., Feikert T., Opanashuk L., Carter J. et al. Translocation of Inhaled Ultrafine Manganese Oxide Particles to the Central Nervous System. Environ // Health Perspectives. – 2006. – Vol. 114. – P. 1172–1178.
  10. Horváth E., Máté Z., Takács S., Pusztai P., Sapi A., Kónya Z. General and electrophysiological toxic ef-fects of manganese in rats following subacute administration in dissolved and nanoparticle form // Scientific World Journal. 2012. DOI: 10.1100/2012/520632. – URL: http://www.hindawi.com/journals/tswj/2012/520632/ (data obrashhenija: 26.09.2014).
  11. Hussan Saber M. The interaction of manganes nanoparticles with pc–12 cells induces dopamine depletion // Toxicol. Science. – 2006. – Vol. 92. – P. 456–463.
  12. Oberdorster G. Nanotoxicology: Am Emerging Discipline Evolving from Studies of Ultrafine Particles // Environmental Health Perspective. – 2005. – Vol. 7. – P. 823–839.
  13. Oberdorster G., Sharp Z., Atudorei V. Translocation of inhaled ultrafine particles to the brain // Inhal. Toxicol. – 2004. – Vol. 16. – P. 437–445.
  14. Ostiguy C., Asselin P., Malo S., Nadeau D. Prise en charge du manganisme d’origine professionnelle: Consensus d’un groupe d’experts. Rapport IRSST № R-416. IRSST. – Montreal, 2005. – 62 p.
  15. Ostiguy C, Malo S, Asselin P. Synthese des connaissances scientifiques sur les risques d’atteinte a la sante suite a une exposition professionnelle au manganese. Rapport IRSST № R-339. IRSST. – Montreal, 2003. – 40 p.
  16. Sakon S., Xue X., Takekawa M., Sasazuki T., Okazaki T., Kojima Y., et al. NF–kB inhibits TNF–induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death // EMBO J. – 2003. – Vol. 22, № 15. – P. 3898–3909.
  17. Sárközi L., Horváth E., Kónya Z, Kiricsi I. Subacute intratracheal exposure of rats to manganese nanoparticles: be-havioral, electrophysiological, and general toxicological effects // Inhal Toxicol. – 2009. – Vol. 21, Suppl. 1. – P. 83–91.
  18. The World’s Manufacturer of Engineered & Advanced Materials: American Elements. 2014. Available from: http://www.americanelements.com/mnoxnp.html [last accessed: 8 July 2014].
  19. Wang J., Rahman M., Duhart H., Newport G. Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles // NeuroToxicology. – 2009. – Vol. 30. – P. 926–33.
  20. Whitesides J., Eigler D., Anders R. Vision for Nanotechnology R&D in the Next Decade: IWGN Work-shop Report. 2002. Moscow.
  21. Win-Shwe Tin-Tin, Fujimaki H. Nanoparticles and Neurotoxicity // J. Mol. Sci. – 2011. – Vol. 12. – P. 6267–6280.

You are here