Genetic and immunological markers of sensitivity and effect in potash production workers in the terms of combined risk factors’ impact

View or download the full article: 
UDC: 
613.64: 616.717 – 057
Authors: 

O.V. Dolgikh1,2, A.V. Kryvtsov1, K.G. Gorshkova1, D.V. Lanin1,2, O.A. Bubnova1,2, D.G. Dianova1, T.S. Lykhina1, N.A. Vdovina1

Organization: 

1 FBSI “Federal Scientific Center for Medical and Preventive Health Risk Management Technologies”, Russian Federation, Perm, 82, Monastyrskaya St., 614045
2 FSBEI HPE “Perm State National Research University”, Russian Federation, Perm, 15, Bukireva St., 614990

Abstract: 

The evaluation of immunological and genetic markers in potash production workers has been performed. It was shown that under the combined impact of harmful factors (sylvite dust, noise) increased production of immune cytokine regulation markers was observed: tumor necrosis factor (TNFalfa) and vascular endothelial growth factor (VEGF), as well as a modified coding polymorphism of gene regions in the form of increased prevalence of variant alleles at the expense of minor homozygous (VEGF) and heterozygous (TNFalfa) genotypes. Detoxification genes’ polymorphism CYP1A1, CPOX characterizes the specific differences with the comparison group. Genes TNFalfa, VEGF, CYP1A1, CPOX are recommended as markers for susceptibility testing, and their encoded cytokines (tumor necrosis factor and vascular endothelial growth factor) as markers of effect in assessing health risk in potash production workers.

Keywords: 
sylvite dust, noise, gene polymorphism, markers
Dolgikh O.V., Kryvtsov A.V., Gorshkova K.G., Lanin D.V., Bubnova O.A., Dianova D.G., Lykhina T.S., Vdovina N.A. Genetic and immunological markers of sensitivity and effect in potash production workers in the terms of combined risk factors’ impact Health Risk Analysis, 2014, no. 3, pp. 71-76
References: 
  1. Dolgih O.V., Predeina R.A., Dianova D.G. Jeksperimental'naja ocenka vlijanija fenolov na immunoreguljaciju ex vivo [Experimental evaluation of phenols’ impact on immunoregulation ex vivo]. Analiz riska zdorov'ju, 2014, no. 1, pp. 73–81.
  2. Zajceva N.V., Dolgih O.V., Dianova D.G. Markery immunnogo statusa u apparatchikov, zanjatyh na proizvodstve aktivirovannyh uglej [Immune status markers in operators engaged in the activated carbons’ production]. Permskij medicinskij zhurnal, 2011, no. 5, vol. 28, pp. 70–74.
  3. Izmerov N.F. Professional'nyj otbor v medicine truda [Professional selection in occupational medicine]. Medicina truda i promyshlennaja jekologija, 2006, no. 3, pp. 1–5.
  4. Dolgih O.V., Krivcov A.V., Gugovich A.M., Harahorina R.A., Lanin D.V., Lyhina T.S., Safonova M.A. Immunologicheskie i geneticheskie markery vozdejstvija aromaticheskih uglevodorodov na rabotajushhih [Immunological and genetic markers of exposure to aromatic hydrocarbons on workers]. Medicina truda i promyshlennaja jekologija, 2012, no. 12, pp. 30–33.
  5. Krzystyniak K. et al. Approaches to the evaluation of chemical-induced immunotoxicity. Environ Health Perspect, 1995, vol. 103, suppl. 9, pp. 17–22.
  6. Newby C.S. et al. Cytokine release and cytotoxicity in human keratinocytes and fibroblasts induced by phenols and sodium dodecyl sulfate. Journal of Investigative Dermatology, 2000, vol. 115, pp. 292–298.
  7. Falchetti R. et al. Effects of resveratrol on human immune cell function. Life Sci., 2001, vol. 70, no. 1, pp. 81–96.
  8. Gleichmann E. et al. Immunotoxicilogy: suppressive and stimulatory effects of drugs and environmental chemicals on the immune system. Arch. Toxicology, 1989, no. 63, pp. 257–273.
  9. Stiller-Winkler R. Influence of air pollution on humoral immune response. J Clin Epidemiol, 1996, vol. 49(5), pp. 527–534.
  10. Gervasi P.G., Longo V., Naldi F., Panattoni G., Ursino F. Xenobiotic-metabolizing enzymes in human respiratory nasal mucosa. Biochem Pharmacol., 1991, vol. 41, pp. 177–184.

You are here