3D modeling of antroduodenal zone motility of digestive track for the purpose of health risks evaluation with peroral exposition to chemicals

View or download the full article: 

M.R. Kamaltdinov


Federal Budget Scientific Institution “Federal Scientific Center for Medical and Preventive Health Risk Management Technologies”, Russian Federation, Perm, 82 Monastyrskaya St., 614045
Federal State Budgetary Educational Institution of Higher Professional Education "Perm State National Research Polytechnic University", Russian Federation, Perm, 29 Komsomolsky av., 614990


As a part of multi-level model of accumulation of functional disorders in the human body under the influence of environmental factors, the sub-model of “meso-level” of digestive system is being developed. The article highlights the tasks of reconstruction of 3D model of antroduodenal area of the gastrointestinal tract and evaluation of nodes dislocation of the computational grid at the passing of peristaltic wave in gastric antrum and pyloric sphincter motor activity. The observed approaches could be applied in health risk assessment at peroral exposure to chemicals.

mathematical modeling, digestive system, stomach, evolution of functional disorders, peristaltic waves
Kamaltdinov M.R. 3D modeling of antroduodenal zone motility of digestive track for the purpose of health risks evaluation with peroral exposition to chemicals. Health Risk Analysis, 2014, no. 2, pp. 68-75
  1. Kamaltdinov M.R., Kir'janov D.A. Primenenie rekurrentnyh sootnoshenij dlja ocenki integral'nogo riska zdorov'ju naselenija [Application of recurrence relations for the evaluation of the integral risk to public health]. Zdorov'e sem'i - 21 vek, no. 3. Available at: http://www.fh-21.perm.ru/download/2011-3-6.pdf.
  2. Kir'janov D.A., Kamaltdinov M.R. Metodika rascheta dopolnitel'noj zabolevaemosti i smertnosti na osnove jevoljucionnogo modelirovanija riska zdorov'ju naselenija [Methods of calculating the additional morbidity and mortality based on evolutionary modeling of health risk]. Analiz riska zdorov'ju, 2014, no. 1, pp. 31–39.
  3. Trusov P.V., Zajceva N.V., Kir'janov D.A., Kamaltdinov M.R., Cinker M.Ju., Chigvincev V.M., Lanin D.V. Matematicheskaja model' jevoljucii funkcional'nyh narushenij v organizme cheloveka s uchetom vneshnesredovyh faktorov [Mathematical model of the evolution of functional disorders in the human body, taking into account environmental factors]. Matematicheskaja biologija i bioinformatika, 2012, no. 2, pp. 589–610. Avail-able at: http://www.matbio.org/2012/Trusov_7_589.pdf.
  4. Zaitseva N.V., Shur P.Z., Kir'yanov D.A., Kamaltdinov M.R., Tsinker M.Ju. Metodicheskie podhody k ocenke populjacionnogo riska zdorov'ju na osnove jevoljucionnyh modelej [Methodological approaches to the assessment of public health risk on the basis of evolutionary models]. Zdorov'e naselenija i sreda obitanija, 2013, no. 1 (238), pp. 4–6.
  5. Zaitseva N.V., Trusov P.V., Shur P.Z., Kir'janov D.A., Chigvincev V.M., Cinker M.Ju. Metodicheskie pod-hody k ocenke riska vozdejstvija raznorodnyh faktorov sredy obitanija na zdorov'e naselenija na osnove jevol-jucionnyh modelej [Methodological approaches to assessing the risk of exposure to diverse environmental factors on human health based on evolutionary models]. Analiz riska zdorov'ju, 2013, no. 1, pp. 15–23.
  6. Samura B.A., Dralkin A.V. Farmakokinetika [Pharmacokinetics]. Kharkiv: "Osnova", 1996. 286 p.
  7. Solov'ev V.H., Firsov A.A., Filov V.A. Farmakokinetika [Pharmacokinetics]. Moscow: Medicina, 1980. 432 p.
  8. Trusov P.V., Zajceva N.V., Kamaltdinov M.R. Modelirovanie pishhevaritel'nyh processov s uchetom funk-cional'nyh narushenij v organizme cheloveka: konceptual'naja i matematicheskaja postanovki, struktura modeli [Modeling digestive processes taking into account functional disorders in the human body: conceptual and mathe-matical formulations, structure of the model]. Rossijskij zhurnal biomehaniki, 2013, no. 4, pp. 67–83.
  9. Kozu H., Kobayashi I., Nakajima M., Uemura K., Sato S., Ichikawa S. Analysis of flow phenomena in gas-tric contents induced by human gastric peristalsis using CFD. Food Biophysics, 2010, vol. 5, pp. 330–336.
  10. Liao D., Gregersen H., Hausken T., Gilja O.H., Mundt M., Kassab G. Analysis of surface geometry of the hu-man stomach using real-time 3D ultrasonography in vivo. Neurogastroenterol Motil, 2004, vol. 16, pp. 315–324.
  11. Barequet G., Shapiro D., Tal A. Multilevel sensitive reconstruction of polyhedral surfaces from parallel slices. The Visual Computer, 2000, vol. 16, pp. 116–133.
  12. Dillard S., Krishnan S., Udaykumar H.S. Mechanics of flow and mixing at antroduodenal junction. World J Gastroenterol, 2007, vol. 1, pp. 1365–1371.
  13. Jones K.L., O’Donovan D.G., Horowitz M., Russo A., Lei Y., Hausken T. Effects of posture on gastric emptying, transpyloric flow, and hunger after a glucose drink in healthy humans. Dig Dis Sci, 2006, vol. 51, pp. 1331–1338.
  14. Ferrua M.J, Singh R.P. Modeling the fluid dynamics in a human stomach to gain insight of food digestion. Journal of food science, 2010, vol. 75, pp. 151–162.
  15. Pal A., Indireshkumar K., Schwizer W., Abrahamsson B., Fried M., Brasseur J. G. Gastric flow and mix-ing studied using computer simulation. Proc. R. Soc. Lond. B, 2004, vol. 271, pp. 2587–2594.
  16. Marciani L., Gowland P.A., Spiller R.C., Manoj P., Moore J.R., Young P., Al-Sahab S., Bush D., Wright J., Fillery-Travis A.J. Gastric response to increased meal viscosity assessed by echo-planar magnetic resonance imaging in humans. The journal of nutrition, 2000, vol. 130, pp. 122–127.
  17. Kong F., Singh R.P. Disintegration of solid foods in human stomach. Journal of food science, 2008, vol. 73, pp. 67–80.
  18. Lobregt S., Viergever A. A discrete dynamic contour model. IEEE transactions on medical imaging, 1995, vol. 14, pp. 12–24.
  19. Pal A., Brasseur J. G, Abrahamsson B. A stomach road or “Magenstrasse” for gastric emptying. Journal of Biomechanics, 2007, vol. 40, pp. 1202–1210.
  20. Nedzvezd A., Lukashevich P., Ablameyko S., Deserno T. M., Lehmann. Reconstruction of 3D medical object shapes from 2D cross-sections. Pattern recognition and information processing: proceedings of the tenth international conference. Editors: Krasnoproshin V., Ablameyko S., Sadykhov R. 2009, pp. 247–250.
  21. Rohling R.N. 3D freehand ultrasound: reconstruction and spatial compounding. PhD Dissertation. Univer-sity of Cambridge, 1998. 158 p.
  22. Schulze K. Imaging and modeling of digestion in the stomach and the duodenum. Neurogastroenterol Mo-til, 2006, vol. 18, pp. 172–183.
  23. Feinle C., Kunz P., Boesiger P., Fried M., Schwizer W. Scintigraphic validation of a magnetic resonance imaging method to study gastric emptying of a solid meal in human. Gut, 1999, vol. 44, pp. 106–111.
  24. Singh S., Singh R.P. Gastric Digestion of Foods: Mathematical Modeling of Flow Field in a Human Stom-ach. Food Engineering Interfaces, 2011, pp. 99–117.
  25. Treece G.M. Volume measurement and surface visualisation in sequential freehand 3D ultrasound. PhD Dissertation. University of Cambridge, 2000. 172 p.
  26. Frokjaer J.B., Andersen S.D., Drewes A.M., Gregersen H. Ultrasound-determined geometric and biome-chanical properties of the human duodenum. Dig. Dis. Sci., 2006, vol. 51, pp. 1662–1669.
  27. Xue Z., Ferrua M.J., Singh R.P. Computational fluid dynamics modeling of granular flow in human stom-ach. Alimentos hoy, 2012, vol. 21, pp. 3–14.

You are here