Methodical approaches to increasing the accuracy of exposure assessment based on the conjugation of simulation and monitoring data on ambient air quality

View or download the full article: 
UDC: 
614.71: 711.5
Authors: 

I.V. May, S.V. Kleyn, V.M. Chigvintsev, S.Yu. Balashov

Organization: 

FBSI «Federal Scientific Center for Medical and Preventive Health Risk Management Technologies», Russian Federation, Perm, 82 Monastyrskaya St., 614045

Abstract: 

To make the assessment of human inhalation exposure more accurate, the study proposed and validated a method for the conjugation of data obtained by the monitoring of air pollutants and the calculations of the dispersion of emissions from stationary and mobile sources. The method is based on the determination of the concordance coefficients between the simulation and monitoring of pollutants at certain points (for example in air monitoring stations) and on the solution using the concordance coefficients of a system of linear algebraic equa-
tions for points inside triangles produced by Delaunay traingulation in a given area. The validation and verification of the method in a large industrial center case study suggests a 1.5 to 4 enhancement of the accuracy of forecasting ground level concentrations in comparison with the approximation of the data obtained from monitoring stations by the inverse distance method or dispersion calculations. The method provides a more correct zoning and the determination of the number of individuals residing in an area of short-term and / or long-term (chronic) exposure.

Keywords: 
ambient air, exposure assessment, dispersion calculations, monitoring, accuracy of forecasting
May I.V., Kleyn S.V., Chigvintsev V.M., Balashov S.Yu. Methodical approaches to increasing the accuracy of exposure assessment based on the conjugation of simulation and monitoring data on ambient air quality. Health Risk Analysis, 2013, no. 4, pp. 17-25
References: 
  1. Berezhnaja E.V. Ocenka riska dlja zdorov'ja naselenija g.Voronezha pri vozdejstvii himicheskih veshhestv, zagrjaznjajushhih atmosfernyj vozduh [Human health risk assessment of exposure to chemical substances polluting ambient air in the city of Voronezh]. Modelirovanie, optimizacija i informacionnye tehnologii, 2013, no. 1, pp. 1–6.
  2. Bobkova T.E. Znachenie funkcional'nogo zonirovanija goroda [The meaning of urban functional zoning]. Zdorov'e naselenija i sreda obitanija, 2009, no. 6, pp. 11–14 .
  3. Djevis DZh. S. Statisticheskij analiz dannyh v geologii [Statistical data analysis in geology]. Moscow: Ne-dra, 1990. Vol. 1–2.
  4. Monitoring kachestva atmosfernogo vozduha dlja ocenki vozdejstvija na zdorov'e cheloveka [Ambient air quality monitoring for health impact assessment]. Regional'nye publikacii WHO, Evropejskaja serija, Praga: WHO, 1997, no. 85. 288 p.
  5. Mishina A.L. ispol'zovanie metodologii ocenki riska dlja upravlenija kachestvom atmosfernogo vozduha [Using the risk assessment methodology for ambient air quality management]. Zdorov'e naselenija i sreda obi-tanija, 2009, no. 6, pp. 26–29.
  6. Rukovodstvo po kontrolju zagrjaznenija atmosfery. RD 52.04.186-89 [Guidelines on air pollution monitor-ing. RD 52.04.186-89]. Moscow, 1991. 641 p.
  7. Gasilin V.V., Bocharov E.P., Vahitov K.H., Popov G.O., Ajzatullin A.A. Sanitarno-gigienicheskaja ocenka atmosfernogo vozduha i ocenka kancerogennogo riska dlja zdorov'ja naselenija v krupnom promyshlennom gorode [Environmental health assessment of ambient air and carcinogenic risk assessment in a large industrial city]. Zdorov'e naselenija i sreda obitanija, 2013, no. 4 (241), pp. 42–44.
  8. Skvorcov A.V. Trianguljacija Delone i ee primenenie [Delaunay triangulation and its application]. Tomsk: Izd-vo Tomskogo un-ta, 2002. 128 p.
  9. Centr Prostranstvennyh Issledovanij. Geostatisticheskij analiz [Center for Spatial Research. Geostatistical analysis], available at: http://www.geointellect.spb.ru/?id=157.
  10. Shajgardanova Ch.H., Hamitova R.Ja. Ocenka riska, obuslovlennogo zagrjazneniem atmosfernogo voduza, dlja zdorov'ja detej doshkol'nogo vozrasta g.Nizhnekamska [The assessment of a risk related to ambient air pollution in pre-school children in the city of Nizhnekamsk]. Prakticheskaja medicina, 2008, no. 30, pp. 115–116.
  11. Shitikov V.K., Rozenberg G.S., Kostin N.V.. Metody sinteticheskogo kartografirovanija territorii (na primere jekologo-informacionnoj sistemy "VOLGABAS") [Methods for synthetic mapping of an area (a VOLGABAS environ-mental information system case study)]. Kolichestvennye metody jekologii i gidrobiologii (Sbornik nauchnyh trudov, pos-vjashhennyj pamjati A.I. Bakanova). Ed. chl.-korr. RAN G.S. Rozenberg. Tol'jatti: SamNC RAN, 2005, pp. 167–227.
  12. Fushimi A., Kawashima H., Kajihara H. Source apportionment based on an atmospheric dispertion model and multiple linear regression analysis. Atmospheric Environment, 2005, vol. 39, no. 7, pp. 1323–1334.
  13. Kwak B.K., Kim J.H., Yi J., Park H.-S., Kim N.G., Choi K. A GIS-based national Emission inventory of major VOCS and risk assessment. Part II – Quantitative verification and risk assessment using an air dispersion model. Korean Journal of Chemical Engineering, 2010, vol. 27, no. 1, pp. 121–128.
  14. Hanna, S.R., Review of Atmospheric Diffusion Models for Regulatory Applications. World Meteorologi-cal Organization Technical Note No. 177, Geneva, Switzerland: WMO, 1982, no. 581. 42 p.

You are here