Оценка риска никельсодержащих наноматериалов: идентификация опасного фактора

Файл статьи: 
УДК: 
544.77:546.74:54-[31+36]:576.[34+35+36]:57.044:613.6.027:613.2.099
Авторы: 

И.В. Гмошинский1, С.А. Хотимченко1,2

Организация: 

1Федеральный исследовательский центр питания, биотехнологии и безопасности пищи,
Россия, 109240, г. Москва, Устьинский проезд, 2/14
2Первый Московский государственный медицинский университет им. И.М. Сеченова,
Россия, 119435, г. Москва, ул. Большая Пироговская, 2, стр. 4

Аннотация: 

Наночастицы (НЧ) никеля (Ni) и его соединений привлекают большое внимание с точки зрения перспектив их инновационного использования в качестве катализаторов, материалов для электротехники, электроники и фотоники, лекарственных и диагностических препаратов, пестицидов. Производство этих веществ в наноформе имеет широкие перспективы роста в ближайшем будущем, что влечет за собой усиление нагрузки этими наноматериалами на организм человека. При этом Ni и его соединения даже в формах традиционной дисперсности высокотоксичны для человека. Механизмы их токсичности состоят в развитии окислительного стресса, нарушении функции клеточных мембран и митохондрий, экспрессии ядерных факторов транскрипции, отвечающих за развитие апоптоза, каспаз, а также протоонкогенов. Ведущую роль в токсичности Ni-содержащих наноматериалов играет, по-видимому, эмиссия из них ионов тяжелого металла Ni++, обладающего прооксидантной активностью, влияющего на активность ферментов и экспрессию генов. В модельных экспериментах in vitro с использованием культур клеток, являющихся морфологическими и функциональными аналогами клеток эпителия дыхательных путей и желудочно-кишечного тракта, печени, почек, нервной системы, для Ni-содержащих наноматериалов отмечено цитотоксическое действие, способность провоцировать оксидантный стресс, влиять на экспрессию белков апоптоза и ядерных транскрипционных факторов, вызывать апоптоз и некроз. Имеются данные, свидетельствующие о наличии у Ni-cодержащих наноматериалов злокачественного трансформирующего действия in vitro. В совокупности это указывает на соединения никеля в наноформе как новый опасный фактор, требующий оценки создаваемых им рисков для здоровья работников предприятий, населения и потребителей продукции.
В обзоре проанализированы источники литературы по вопросу о цитотоксичности Ni-содержащих наноматериалов и механизмах их действия на молекулярно-генетическом и клеточном уровне за период, преимущественно, с 2011 года.

Ключевые слова: 
никель, оксид никеля, наночастицы, цитотоксичность, генотоксичность, трансформирующая способность, апоптоз, экспрессия генов, оценка риска.
Гмошинский И.В., Хотимченко С.А. Оценка риска никельсодержащих наноматериалов: идентификация опасного фактора // Анализ риска здоровью. – 2021. – № 2. – С. 177–191. DOI: 10.21668/health.risk/2021.2.17
Список литературы: 
  1. О'Брайен Р. Жиры и масла. Производство, состав и свойства, применение. – СПб: Профессия, 2007. – 383 с.
  2. Role of NF-B activation and Th1/Th2 imbalance in pulmonary toxicity induced by nano NiO / X. Chang, A. Zhu, F. Liu, L. Zou, L. Su, S. Li, Y. Sun // Environ. Toxicol. – 2017. – Vol. 32, № 4. – P. 1354–1362. DOI: 10.1002/tox.22329
  3. Solid-state synthesis of ordered mesoporous carbon catalysts via a mechanochemical assembly through coordination cross-linking / P. Zhang, L. Wang, S. Yang, J.A. Schott, X. Liu, S.M. Mahurin, C. Huang, Y. Zhang [et al.] // Nat. Commun. – 2017. – Vol. 28, № 8. – P. 15020. DOI: 10.1038/ncomms15020
  4. A reusable magnetic nickel nanoparticle based catalyst for the aqueous synthesis of diverse heterocycles and their evaluation as potential antibacterial agent / D. Bhattacharjee, S.K. Sheet, S. Khatua, K. Biswas, S. Joshi, B. Myrboh // Bioorganic Medicinal Chemistry. – 2018. – Vol. 26, № 18. – P. 5018–5028. DOI: 10.1016/j.bmc.2018.08.033
  5. Magnetic bistability and controllable reversal of asymmetric ferromagnetic nanorings / F.Q. Zhu, G.W. Chern, O. Tchernyshyov, X.C. Zhu, J.G. Zhu, C.L. Chien // Phys. Rev. Lett. – 2006. – Vol. 96, № 2. – P. 027205. DOI: 10.1103/PhysRevLett.96.027205
  6. Performance enhancement and side reactions in rechargeable nickel-iron batteries with nanostructured electrodes / D. Lei, D.C. Lee, A. Magasinski, E. Zhao, D. Steingart, G. Yushin // ACS Appl. Materials. Interfaces. – 2016. – Vol. 8, № 3. – P. 2088–2096. DOI: 10.1021/acsami.5b10547
  7. Chou K.S., Chang S.C., Huang K.C. Study on the characteristics of nanosized nickel particles using sodium borohydride to promote conversion // Azo J. Mater. Online. – 2007. – Vol. 3. – P. 172–179. DOI: 10.2240/azojomo0232
  8. Graphene supported nickel nanoparticle as a viable replacement for platinum in dye sensitized solar cells / R. Bajpai, S. Roy, N. Kulshrestha, J. Rafiee, N. Koratkar, D.S. Misra // Nanoscale. – 2012. – Vol. 4, № 3. – P. 926–930. DOI: 10.1039/c2nr11127f
  9. A micro-/nano-chip and quantum dots-based 3D cytosensor for quantitative analysis of circulating tumor cells / X. Wu, T. Xiao, Z. Luo, R. He, Y. Cao, Z. Guo [et al.] // J. Nanobiotechnol. – 2018. – Vol. 16, № 1. – P. 65. DOI: 10.1186/s12951-018-0390-x
  10. Borowska S., Brzóska M.M. Metals in cosmetics: implications for human health // J. Appl. Toxicol. – 2015. – Vol. 35, № 6. – P. 551–752. DOI: 10.1002/jat.3129
  11. Synthesis of copper-nickel nanoparticles prepared by mechanical milling for use in magnetic hyperthermia / I. Ban, J. Stergar, M. Drofenik, G. Ferk, D. Makovec // J. Magn. Magn. Mater. – 2011. – Vol. 323, № 17. – P. 2254–2258. DOI: 10.1016/j.jmmm.2011.04.004
  12. Angajala G., Ramya R., Subashini R. In-vitro anti-inflammatory and mosquito larvicidal efficacy of nickel nanoparticles phytofabricated from aqueous leaf extracts of Aegle marmelos Correa // Acta Tropica. – 2014. – № 135. – P. 19–26. DOI: 10.1016/j.actatropica.2014.03.012
  13. Spectroscopic investigation of biosynthesized nickel nanoparticles and its larvicidal, pesticidal activities / G. Elango, S.M. Roopan, K.I. Dhamodaran, K. Elumalai, N.A. Al-Dhabi, M.V. Arasu // J. Photochem. Photobiol. B: Biology. – 2016. – Vol. 162. – P. 162–167. DOI: 10.1016/j.jphotobiol.2016.06.045
  14. High-throughput transcriptomics: insights into the pathways involved in (nano) nickel toxicity in a key invertebrate test species / S.I.L. Gomes, C.P. Roca, J.J. Scott-Fordsmand, M.J.B. Amorim // Environ. Pollut. – 2019. – № 245. – P. 131–140. DOI: 10.1016/j.envpol.2018.10.123
  15. Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors, a self-overview / B. Katsnelson, L. Privalova, M.P. Sutunkova, V.B. Gurvich, N.V. Loginova, I.A. Minigalieva, E.P. Kireyeva, V.Y. Shur [et al.] // Int. J. Nanomed. – 2015. – Vol. 16, № 10. – P. 3013–3029. DOI: 10.2147/IJN.S80843
  16. Magaye R., Zhao J. Recent progress in studies of metallic nickel and nickel-based nanoparticles' genotoxicity and carcinogenicity // Environ. Toxicol. Pharmacol. – 2012. – Vol. 34, № 3. – P. 644–650. DOI: 10.1016/j.etap.2012.08.012
  17. Nanomaterial induced immune responses and cytotoxicity / A. Ali, M. Suhail, S. Mathew, M.A. Shah, S.M. Harakeh, S. Ahmad, Z. Kazmi, M.A.R. Alhamdan [et al.] // J. Nanosci. Nanotechnol. – 2016. – Vol. 16, № 1. – P. 40–57. DOI: 10.1166/jnn.2016.10885
  18. Kornick R., Zug K.A. Nickel // Dermatitis. – 2008. – Vol. 19, № 1. – P. 3–8. DOI: 10.2310/6620.2008.07082
  19. Nano-metal oxides: exposure and engineering control assessment / A. Garcia, A. Eastlake, J.L. Topmiller, C. Sparks, K. Martinez, C.L. Geraci // J. Occup. Environ. Hyg. – 2017. – Vol. 14, № 9. – P. 727–737. DOI: 10.1080/15459624.2017.1326699
  20. Wu Y., Kong L. Advance on toxicity of metal nickel nanoparticles // Environ. Geochem. Health. – 2020. – Vol. 42, № 7. – P. 2277–2286. DOI: 10.1007/s10653-019-00491-4
  21. Bioavailability, intracellular mobilization of nickel, and HIF-1α activation in human lung epithelial cells exposed to metallic nickel and nickel oxide nanoparticles / J.R. Pietruska, X. Liu, A. Smith, K. McNeil, P. Weston, A. Zhitkovich, R. Hurt, A.B. Kane // Toxicol. Sci. – 2011. – Vol. 124, № 1. – P. 138–148. DOI: 10.1093/toxsci/kfr206
  22. Nickel oxide nanoparticles induce cytotoxicity, oxidative stress and apoptosis in cultured human cells that is abrogated by the dietary antioxidant curcumin / M.A. Siddiqui, M. Ahamed, J. Ahmad, M.A.M. Khan, J. Musarrat, A.A. Al-Khedhairy, S.A. Alrokayan // Food Chem. Toxicol. – 2012. – Vol. 50, № 3–4. – P. 641–647. DOI: 10.1016/j.fct.2012.01.017
  23. Evaluation of the genotoxic properties of nickel oxide nanoparticles in vitro and in vivo / R.F. De Carli, D.D.S. Chaves, T.R. Cardozo, A.P. de Souza, A. Seeber, W.H. Flores, K.F. Honatel, M. Lehmann, R.R. Dihl // Mutat. Res. Genet. Toxicol. Environ. Mutagen. – 2018. – Vol. 836, Pt. B. – P. 47–53. DOI: 10.1016/j.mrgentox.2018.06.003
  24. Capasso L., Camatini M., Gualtieri M. Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells // Toxicol. Lett. – 2014. – Vol. 226, № 1. – P. 28–34. DOI: 10.1016/j.toxlet.2014.01.040
  25. Nickel release, ROS generation and toxicity of Ni and NiO micro- and nanoparticles / S. Latvala, J. Hedberg, S. Di Bucchianico, L. Moller, I. Odnevall Wallinder, K. Elihn, H.L. Karlsson // PLoS ONE. – 2016. – Vol. 11, № 7. – P. e0159684. DOI: 10.1371/journal.pone.0159684
  26. In vitro and in vivo evaluation of the toxicities induced by metallic nickel nano and fine particles / R. Magaye, Y. Gu, Y. Wang, H. Su, Q. Zhou, G. Mao, H. Shi, X. Yue [et al.] // J. Mol. Histol. – 2016. – Vol. 47, № 3. – P. 273–286. DOI: 10.1007/s10735-016-9671-6
  27. Nano nickel oxide promotes epithelial-mesenchymal transition through transforming growth factor 1/smads signaling pathway in A549 cells / X. Chang, M. Tian, Q. Zhang, J. Gao, S. Li, Y. Sun // Environ Toxicol. – 2020. – Vol. 35, № 12. – P. 1308–1317. DOI: 10.1002/tox.22995
  28. Evaluation of acute oxidative stress induced by NiO nanoparticles in vivo and in vitro / M. Horie, H. Fukui, K. Nishio, S. Endoh, H. Kato, K. Fujita, A. Miyauchi, M. Shichiri [et al] // J. Occup. Health. – 2011. – Vol. 53, № 2. – P. 64–74. DOI: 10.1539/joh.L10121
  29. NiO nanoparticles induce cytotoxicity mediated through ROS generation and impairing the antioxidant defense in the human lung epithelial cells, A549: preventive effect of Pistacia lentiscus essential oil / M. Khiari, Z. Kechrid, F. Klibet, A. Elfeki, M.S. Shaarani, D. Krishnaiah // Toxicol. Rep. – 2018. – Vol. 21, № 5. – P. 480–488. DOI: 10.1016/j.toxrep.2018.03.012
  30. NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells / W.-X. Duan, M.-D. He, L. Mao, F.-H. Qian, Y.-M. Li, H.-F. Pi, C. Liu, C.-H. Chen [et al.] // Toxicol. Appl. Pharmacol. – 2015. – Vol. 286, № 2. – P. 80–91. DOI: 10.1016/j.taap.2015.03.024
  31. Transcriptome profiling and toxicity following long-term, low dose exposure of human lung cells to Ni and NiO nanoparticles-comparison with NiCl2 / A.R. Gliga, S. Di Bucchianico, E. Åkerlund, H.L. Karlsson // Nanomaterials (Basel). – 2020. – Vol. 10, № 4. – P. 649. DOI: 10.3390/nano10040649
  32. Calcium-dependent cyto- and genotoxicity of nickel metal and nickel oxide nanoparticles in human lung cells / S. Di Bucchianico, A.R. Gliga, E. Åkerlund, S. Skoglund, I.O. Wallinder, B. Fadeel, H.L. Karlsson // Part. Fibre Toxicol. – 2018. – Vol. 15, № 1. – P. 32. DOI: 10.1186/s12989-018-0268-y
  33. Genotoxic and mutagenic properties of Ni and NiO nanoparticles investigated by comet assay, γ-H2AX staining, Hprt mutation assay and ToxTracker reporter cell lines / E. Åkerlund, F. Cappellini, S. Di Bucchianico, S. Islam, S. Skoglund, R. Derr, I.O. Wallinder, G. Hendriks, H.L. Karlsson // Environ. Mol. Mutagen. – 2018. – Vol. 59, № 3. – P. 211–222. DOI: 10.1002/em.22163
  34. Abudayyak M., Guzel E., Özhan G. Cytotoxic, genotoxic, and apoptotic effects of nickel oxide nanoparticles in intestinal epithelial cells // Turk. J. Pharm. Sci. – 2020. – Vol. 17, № 4. – P. 446–451. DOI: 10.4274/tjps.galenos.2019.76376
  35. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells, HepG2 / M. Ahamed, D. Ali, H.A. Alhadlaq, M.J. Akhtar // Chemosphere. – 2013. – Vol. 93, № 10. – P. 2514–2522. DOI: 10.1016/j.chemosphere.2013.09.047
  36. Concentration-dependent induction of reactive oxygen species, cell cycle arrest and apoptosis in human liver cells after nickel nanoparticles exposure / J. Ahmad, H.A. Alhadlaq, M.A. Siddiqui, Q. Saquib, A.A. Al-Khedhairy, J. Musarrat, M. Ahamed // Environ. Toxicol. – 2015. – Vol. 30, № 2. – P. 137–148. DOI: 10.1002/tox.21879
  37. Nickel oxide nanoparticles induced transcriptomic alterations in HEPG2 cells / Q. Saquib, M. Siddiqui, J. Ahmad, S. Ansari, M. Faisal, R. Wahab, A. Alatar, A.A. Al-Khedhairy, J. Musarrat // Adv. Exp. Med. Biol. – 2018. – Vol. 1048. – P. 163–174. DOI: 10.1007/978-3-319-72041-8_10
  38. High-throughput transcriptomics: an insight on the pathways affected in HepG2 cells exposed to nickel oxide nanoparticles / Q. Saquib, P. Xia, M.A. Siddiqui, J. Zhang, Y. Xie, M. Faisal, S.M. Ansari, H.A. Alwathnani [et al.] // Chemosphere. – 2020. – Vol. 244. – P. 125488. DOI: 10.1016/j.chemosphere.2019.125488
  39. TGF-β1 mediated Smad signaling pathway and EMT in hepatic fibrosis induced by Nano NiO in vivo and in vitro / Q. Zhang, X. Chang, H. Wang, Y. Liu, X. Wang, M. Wu, H. Zhan, S. Li, Y. Sun // Environ. Toxicol. – 2020. – Vol. 35, № 4. – P. 419–429. DOI: 10.1002/tox.22878
  40. Cytotoxicity of NiO and Ni(OH)2 nanoparticles is mediated by oxidative stress-induced cell death and suppression of cell proliferation / M.H. Cambre, N.J. Holl, B. Wang, L. Harper, H.-J. Lee, C.C. Chusuei, F.Y.S. Hou, E.T. Williams [et al.] // Int. J. Mol Sci. – 2020. – Vol. 21, № 7. – P. 2355. DOI: 10.3390/ijms21072355
  41. Abudayyak M., Guzel E., Özhan G. Nickel oxide nanoparticles induce oxidative DNA damage and apoptosis in kidney cell line, NRK-52E // Biol. Trace Elem. Res. – 2017. – Vol. 178, № 1. – P. 98–104. DOI: 10.1007/s12011-016-0892-z
  42. Reactive oxygen species-mediated DNA damage and apoptosis in human skin epidermal cells after exposure to nickel nanoparticles / S. Alarifi, D. Ali, S. Alakhtani, E.S. Al Suhaibani, A.A. Al-Qahtani // Biol. Trace Elem. Res. – 2014. – Vol. 157, № 1. – P. 84–93. DOI: 10.1007/s12011-013-9871-9
  43. Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway / J. Zhao, L. Bowman, X. Zhang, X. Shi, B. Jiang, V. Castranova, M. Ding // J Nanobiotechnol. – 2009. – Vol. 7. – P. 2. DOI: 10.1186/1477-3155-7-2
  44. Inhibition of nickel nanoparticles-induced toxicity by epigallocatechin-3-gallate in JB6 cells may be through down-regulation of the MAPK signaling pathways / Y. Gu, Y. Wang, Q. Zhou, L. Bowman, G. Mao, B. Zou, J. Xu, Y. Liu [et al.] // PLoS One. – 2016. – Vol. 11, № 3. – P. e0150954. DOI: 10.1371/journal.pone.0150954
  45. Dumala N., Mangalampalli B., Grover P. In vitro genotoxicity assessment of nickel(II)oxide nanoparticles on lymphocytes of human peripheral blood // J. Appl. Toxicol. – 2019. – Vol. 39, № 7. – P. 955–965. DOI: 10.1002/jat.3784
  46. The role of miR-21 in nickel nanoparticle-induced MMP-2 and MMP-9 production in mouse primary monocytes: in vitro and in vivo studies / Y. Mo, Y. Zhang, L. Mo, R. Wan, M. Jiang, Q. Zhang // Environ. Pollut. – 2020. – Vol. 267. – P. 115597. DOI: 10.1016/j.envpol.2020.115597
  47. Molecular mechanisms underlying nickel nanoparticle induced rat Sertoli-germ cells apoptosis / L. Kong, W. Hu, X. Gao, Y. Wu, Y. Xue, K. Cheng, M. Tang // Sci. Total Environ. – 2019. – Vol. 692. – P. 240–248. DOI: 10.1016/j.scitotenv.2019.07.107
  48. Effect and mechanism of PI3K/AKT/mTOR signaling pathway in the apoptosis of GC-1 cells induced by nickel nanoparticles / Y. Wu, J. Ma, Y. Sun, M. Tang, L. Kong // Chemosphere. – 2020. – Vol. 255. – P. 126913. DOI: 10.1016/j.chemosphere.2020.126913
  49. In vitro genotoxicity of airborne Ni-NP in air-liquid interface / S. Latvala, D. Vare, H.L. Karlsson, K. Elihn // J. Appl. Toxicol. – 2017. – Vol. 37, № 12. – P. 1420–1427. DOI: 10.1002/jat.3510
  50. Abudayyak M., Guzel E., Özhan G. Nickel oxide nanoparticles are highly toxic to SH-SY5Y neuronal cells // Neurochem. Int. – 2017. – Vol. 108. – P. 7–14. DOI: 10.1016/j.neuint.2017.01.017
  51. The effects of nickel oxide nanoparticles on tau protein and neuron-like cells: biothermodynamics and molecular studies / M. Hajimohammadjafartehrani, S.H. Hosseinali, A. Dehkohneh, P. Ghoraeian, M. Ale-Ebrahim, K. Akhtari, K. Shahpasand, A.A. Saboury, F. Attar, M. Falahati // Int. J. Biol. Macromol. – 2019. – Vol. 127. – P. 330–339. DOI: 10.1016/j.ijbiomac.2019.01.050
  52. Biophysical, molecular dynamics and cellular studies on the interaction of nickel oxide nanoparticles with tau proteins and neuron-like cells / S.H. Hosseinali, Z.P. Boushehri, B. Rasti, M. Mirpour, K. Shahpasand, M. Falahati // Int. J. Biol. Macromol. – 2019. – Vol. 125. – P. 778–784. DOI: 10.1016/j.ijbiomac.2018.12.062
  53. Are in vivo and in vitro assessments of comparative and combined toxicity of the same metallic nanoparticles compatible, or contradictory, or both? A juxtaposition of data obtained in respective experiments with NiO and Mn3O4 nanoparticles / I. Minigalieva, T. Bushueva, E. Fröhlich, C. Meindl, K. Öhlinger, V. Panov, A. Varaksin, V. Shur [et al.] // Food Chem Toxicol. – 2017. – Vol. 109, Pt. 1. – P. 393–404. DOI: 10.1016/j.fct.2017.09.032
  54. Metallic nickel nanoparticles may exhibit higher carcinogenic potential than fine particles in JB6 cells / R. Magaye, Q. Zhou, L. Bowman, B. Zou, G. Mao, J. Xu, V. Castranova, J. Zhao, M. Ding // PLoS One. – 2014. – Vol. 9, № 4. – P. e92418. DOI: 10.1371/journal.pone.0092418
  55. Muñoz A., Costa M. Elucidating the mechanisms of nickel compound uptake – a review of particulate and nano-nickel endocytosis and toxicity // Toxicol. Appl. Pharmacol. – 2012. – Vol. 260, № 1. – P. 1–16. DOI: 10.1016/j.taap.2011.12.014
  56. Manke A., Wang L., Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity // Biomed. Res. Int. – 2013. – Vol. 2013. – P. 942916. DOI: 10.1155/2013/942916
  57. Cameron K.S., Buchner V., Tchounwou P.B. Exploring the molecular mechanisms of nickel-induced genotoxicity and carcinogenicity: a literature review // Rev. Environ. Health. – 2011. – Vol. 26, № 2. – P. 81–92. DOI: 10.1515/reveh.2011.012
  58. Mechanisms involved in reproductive toxicity caused by nickel nanoparticle in female rats / L. Kong, X. Gao, J. Zhu, K. Cheng, M. Tang // Environ. Toxicol. – 2016. – Vol. 31, № 11. – P. 1674–1683. DOI: 10.1002/tox.22288
  59. Acute toxicity of nickel nanoparticles in rats after intravenous injection / R.R. Magaye, X. Yue, B. Zou, H. Shi, H. Yu, K. Liu, X. Lin, J. Xu [et al.] // Int. J. Nanomed. – 2014. – Vol. 9. – P. 1393–1402. DOI: 10.2147/ijn.S56212
  60. The role of hypoxia inducible factor-1alpha in the increased MMP-2 and MMP-9 production by human monocytes exposed to nickel nanoparticles / R. Wan, Y. Mo, S. Chien, Y. Li, D.J. Tollerud, Q. Zhang // Nanotoxicology. – 2011. – Vol. 5, № 4. – P. 568–582. DOI: 10.3109/17435390.2010.537791
  61. Токсикологическая оценка наноструктурного диоксида кремния. IV. Иммунологические и аллергологические показатели у животных, сенсибилизированных пищевым аллергеном, и заключительное обсуждение / А.А. Шумакова, В.А. Шипелин, Э.Н. Трушина, О.К. Мустафина, И.В. Гмошинский, Р.А. Ханферьян, С.А. Хотимченко, В.А. Тутельян // Вопросы питания. – 2015. – Т. 84, № 5. – С. 102–111.
  62. Influence of orally introduced silver nanoparticles on content of essential and toxic trace elements in organism / I.V. Gmoshinski, A.A. Shumakova, V.A. Shipelin, G.Yu. Maltsev, S.A. Khotimchenko // Nanotechnologies in Russia. – 2016. – Vol. 11, № 9–10. – P. 646–652. DOI: 10.1134/S1995078016050074
Получена: 
07.04.2021
Принята: 
07.06.2021
Опубликована: 
30.06.2021

Вы здесь