Современные аспекты регуляторных, патофизиологических и токсических эффектов, вызываемых ионами кобальта при оральном поступлении в организм человека

Файл статьи: 
УДК: 
613.632.2
Авторы: 

С.И. Доломатов1, Т.П. Сатаева1, В. Жуков2

Организация: 

1Медицинская академия им. С.И. Георгиевского Крымского федерального университета им. В.И. Вернадского, Россия, 295006, г. Симферополь, бульвар Ленина, 5/7
2Университет Николая Коперника, Польша, 87–100 Торунь, ул. Львовская, 1\

Аннотация: 

Кобальт является жизненно необходимым микроэлементом, незаменимым компонентом нескольких ферментов и коферментов. Ионы кобальта появляются в окружающей среде как из естественных источников, так и вследствие деятельности человека. Этот металл широко распространен в природе и может формироваться в результате антропогенной деятельности. Токсические эффекты, вызываемые кобальтом и его соединениями, зависят от физических и химических свойств данных соединений, включая их электронную структуру, ионные параметры (соотношение заряда и размера) и кинетику. Кобальт может оказывать как благоприятные, так и вредные воздействия на здоровье человека. Он полезен для здоровья потому, что является частью витамина В12, необходимого для поддержания здоровья.

Если люди и животные подвергаются воздействию природных уровней кобальта, он не вредит их здоровью. Но когда в организм поступает избыточное количество кобальта, это может вызвать многочисленные хронические вредные воздействия на здоровье, и чем дольше ионы кобальта сохраняются в организме, тем больше изменений происходит в клетках. Кобальт попадает в организм различными путями: в основном с пищей, через дыхательные пути, через кожу или как компонент различных биоматериалов. Несмотря на то что кобальт встречается в окружающей среде в изобилии, большая часть наших знаний о производимых им эффектах была получена в ходе экспериментов на животных. Несомненно, неорганические формы кобальта токсичны, поскольку они накапливаются в разных тканях и могут запустить цепь каскадных патологических изменений в клетках. Хотя некоторые эффекты, вызываемые кобальтом, могут быть полезны с медицинской точки зрения. В связи с этим цель нашего обзора – проанализировать наиболее значимые регуляторные, патофизиологические и эпигенетические эффекты, вызываемые воздействием Co2+ на организм человека.

Ключевые слова: 
кобальт, соли Co2+, кинетика Co2+, тяжелый металл, токсикология кобальта, патофизиология, эпигенетика
Доломатов С.И., Сатаева Т.П., Жуков В. Современные аспекты регуляторных, патофизиологических и токсических эффектов, вызываемых ионами кобальта при оральном поступлении в организм человека // Анализ риска здоровью. – 2019. – № 3. – С. 161–174. DOI: 10.21668/health.risk/2019.3.19
Список литературы: 
  1. Comparison of the dietary cobalt intake in three different Australian diets / B. Hokin, M. Adams, J. Ashton, H. Louie // Asia. Pac. J. Clin. Nutr. – 2004. – Vol. 13, № 3. – P. 289–291.
  2. Cobalt and secondary poisoning in the terrestrial food chain: Data review and research gaps to support risk assessment / J. Gál, A. Hursthouse, P. Tatner, F. Stewart, R. Welton // Environment International. – 2008. – № 34. – P. 821–838. DOI: 10.1016/j.envint.2007.10.006
  3. Scientific Opinion on the use of cobalt compounds as additives in animal nutrition. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) [Электронный ресурс] // EFSA Journal. – 2009. – Vol. 7, № 12. – P. 1383. – URL: https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2009.1383 (дата обращения: 22.06.2017). DOI: 10.2903/j.efsa.2009.1383
  4. Review of cobalt toxicokinetics following oral dosing: Implications for health risk assessments and metal-on-metal hip implant patients / B.E. Tvermoes, D.J. Paustenbach, B.D. Kerger, B.L. Finley, K.M. Unice // Crit. Rev. Toxicol. – 2015. – Vol. 45, № 5. – P. 367–387. DOI: 10.3109/10408444.2014.985818
  5. Effects and blood concentrations of cobalt after ingestion of 1 mg/d by human volunteers for 90 d / B.E. Tvermoes, K.M. Unice, D.J. Paustenbach, B.L. Finley, J.M. Otani, D.A. Galbraith // Am. J. Clin. Nutr. – 2014. – № 99. – P. 632–646. DOI: 10.3945/ajcn.113.071449
  6. Inorganic cobalt supplementation: Prediction of cobalt levels in whole blood and urine using a biokinetic model / K.M. Unice, A.D. Monnot, S.H. Gaffney, B.E. Tvermoes, K.A. Thuett, D.J. Paustenbach, B.L. Finley // Food and Chemical Toxicology. – 2012. – Vol. 50, № 7. – P. 2456–2461. DOI: 10.1016/j.fct.2012.04.009
  7. Trace Metals in the Urine and Hair of a Population in an Endemic Arsenism Area / B. Wei, J. Yu, J. Wang, H. Li, L. Yang, C. Kong // Biol. Trace. Elem. Res. – 2018. – Vol. 182, № 2. – P. 209–216. DOI: 10.1007/s12011-017-1108-x
  8. Simonsen L.O., Harbak H., Bennekou P. Cobalt metabolism and toxicology – a brief update // Sci. Total. Environ. – 2012. – Vol. 432. – P. 210–215. DOI: 10.1016/j.scitotenv.2012.06.009
  9. Genome-wide screen reveals novel mechanisms for regulating cobalt uptake and detoxification in fission yeast / S. Ryuko, Y. Ma, N. Ma, M. Sakaue, T. Kuno // Mol. Genet. Genomics. – 2012. – Vol. 287, № 8. – P. 651–662. DOI: 10.1007/s00438-012-0705-9
  10. Cobalt toxicity in humans – a review of the potential sources and systemic health effects / L. Leyssens, B. Vinck, C. Van Der Straeten, F. Wuyts, L. Maes // Toxicology. – 2017. – Vol. 387. – P. 43–56. DOI: 10.1016/j.tox.2017.05.015
  11. De Boeck M., Kirsch-Volders M., Lison D. Cobalt and antimony: genotoxicity and carcinogenicity // Mutat. Res. – 2003. – Vol. 533, № 1, 2. – P. 135–152. DOI: 10.1016/j.mrfmmm.2003.07.012
  12. A review of the health hazards posed by cobalt / D.J. Paustenbach, B.E. Tvermoes, K.M. Unice, B.L. Finley, B.D. Kerger // Crit. Rev. Toxicol. – 2013. – Vol. 43, № 4. – P. 316–362. DOI: 10.3109/10408444.2013.779633
  13. Folic acid attenuates cobalt chloride-induced PGE2 production in HUVECs via the NO/HIF-1alpha/COX-2 pathway / Y. Liang, X. Zhen, K. Wang, J. Ma // Biochem. Biophys. Res. Commun. – 2017. – Vol. 490, № 2. – P. 567–573. DOI: 10.1016/j.bbrc.2017.06.079
  14. Yorita C.K.L. Metals in blood and urine, and thyroid function among adults in the United States 2007–2008 // Int. J. Hyg. Environ. Health. – 2013. – Vol. 216, № 6. – P. 624–632. DOI: 10.1016/j.ijheh.2012.08.005
  15. Neurotoxicity of cobalt / S. Catalani, M.C. Rizzetti, A. Padovani, P. Apostoli // Hum. Exp. Toxicol. – 2012. – Vol. 31, № 5. – P. 421–437. DOI: 10.1177/0960327111414280
  16. Preconditioning and post-treatment with cobalt chloride in rat model of perinatal hypoxic–ischemic encephalopathy / Y. Dai, W. Li, M. Zhong, J. Chen, Y. Liu, Q. Cheng, T. Li // Brain. Dev. – 2014. – Vol. 36, № 3. – P. 228–240. DOI: 10.1016/j.braindev.2013.04.007
  17. Mendy A., Gasana J., Vieira E.R. Urinary heavy metals and associated medical conditions in the US adult population // Int. J. Environ. Health. Res. – 2012. – Vol. 22, № 2. – P. 105–118. DOI: 10.1080/09603123.2011.605877
  18. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha / Y. Yuan, G. Hilliard, T. Ferguson, D.E. Millhorn // J. Biol. Chem. – 2003. – Vol. 278, № 18. – P. 15911–15916. DOI: 10.74/jbc.M300463200
  19. Maxwell P., Salnikow K. HIF-1: an oxygen and metal responsive transcription factor // Cancer Biol. Ther. – 2004. – Vol. 3, № 1. – P. 29–35. DOI: 10.4161/cbt.3.1.547
  20. Jelkmann W. The Disparate Roles of Cobalt in Erythropoiesis, and Doping Relevance // Open Journal of Hematology. – 2012. – Vol. 3, № 1. – P. 3–6. DOI: 10.13055/ojhmt_3_1_6.121211
  21. Muñoz‐Sánchez J., Chánez‐Cárdenas M.E. The use of cobalt chloride as a chemical hypoxia model // J. Appl. Toxicol. – 2018. – Vol. 39, № 4. – P. 1–15. DOI: 10.1002/jat.3749
  22. The Role of Albumin in Human Toxicology of Cobalt: Contribution from a Clinical Case / S. Catalani, R. Leone, M.C. Rizzetti, A. Padovani, P. Apostoli // ISRN Hematology. – 2011. – Vol. 2011, Article ID 690620. – 6 p. DOI: 10.5402/2011/690620
  23. Jomova K., Valko M. Advances in metal-induced oxidative stress and human disease // Toxicology. – 2011. – Vol. 283, № 2, 3. – P. 65–87. DOI: 10.1016/j.tox.2011.03.001
  24. Experimental review of cobalt induced cardiomyopathy / I.V. Zadnipryany, O.S. Tretiakova, T.P. Sataieva, W. Zukow // Russian Open Medical Journal. – 2017. – Vol. 6, № 1. – P. 1–4. DOI: 10.15275/rusomj.2017.0103
  25. Mitochondrial DNA damage and a hypoxic response are induced by CoCl (2) in rat neuronal PC12 cells / G. Wang, T.K. Hazra, S. Mitra, H.M. Lee, E.W. Englander // Nucleic. Acids. Res. – 2000. – Vol. 28, № 10. – P. 2135–2140. DOI: 10.1093/nar/28.10.2135
  26. CoCl2 induces apoptosis through the mitochondria- and death receptor-mediated pathway in the mouse embryonic stem cells / J.-H. Lee, S.-H. Choi, M.-W. Baek, M.-H. Kim, H.-J. Kim, S.-H. Kim, S.-J. Oh, H.-J. Park [et al.] // Mol. Cell. Biochem. – 2013. – Vol. 379. – P. 133–140. DOI: 10.1007/s11010-013-1635-5
  27. Ionic cobalt but not metal particles induces ROS generation in immune cells in vitro / K. Chamaon, P. Schönfeld, F. Awiszus, J. Bertrand, C.H. Lohmann // J. Biomed. Mater. Res. B. Appl. Biomater. – 2019. – Vol. 107, № 4. – P. 1246–1253. DOI: 10.1002/jbm.b.34217
  28. Cobalt ions recruit inflammatory cells in vitro through human Toll-like receptor-4 / H. Lawrence, D.J. Deeha, J.P. Hol-land, S.A. Anjum, A.E. Mawdesley, J.A. Kirby, A.J. Tyson-Cappera // Biochem. Biophys. Rep. – 2016. – Vol. 7. – P. 374–378. DOI: 10.1016/j.bbrep.2016.07.003
  29. Effect of cobalt-mediated Toll-like receptor 4 activation on inflammatory responses in endothelial cells / S.A. Anjum, H. Lawrence, J.P. Holland, J.A. Kirby, D.J. Deehan, A.J. Tyson // Oncotarget. – 2016. – Vol. 7, № 47. – P. 76471–76478. DOI: 10.18632/oncotarget.13260
  30. A comparative immunological analysis of CoCl2 treated cells with in vitro hypoxic exposure / Shweta, K.P. Mishra, S. Chanda, S.B. Singh, L. Ganju // Biometals. – 2015. – Vol. 28, № 1. – P. 175–185. DOI: 10.1007/s10534-014-9813-9
  31. Sub-chronic oral toxicity study in Sprague-Dawley rats with hypoxia mimetic cobalt chloride towards the development of promising neutraceutical for oxygen deprivation / K. Shrivastava, A. Bansal, B. Singh, M. Sairam, G. Ilavazhagan // Exp. Toxicol. Pathol. – 2010. – Vol. 62, № 5. – P. 489–496. DOI: 10.1016/j.etp.2009.06.012
  32. Effects of serum cobalt ion concentration on the liver, kidney and heart in mice / Y. Liu, H. Xu, F. Liu, R. Tao, J. Yin // Orthopaedic Surgery. – 2010. – Vol. 2, № 2. – P. 134–140. DOI: 10.1111/j.1757-7861.2010.00076.x
  33. Alterations in blood pressure, antioxidant status and caspase 8 expression in cobalt chloride-induced cardio-renal dys-function are reversed by Ocimum gratissimum and gallic acid in Wistar rats / A.S. Akinrinde, A.A. Oyagbemi, T.O. Omobowale, E.R. Asenuga, T.O. Ajibade // J. Trace. Elem. Med. Biol. – 2016. – № 36. – P. 27–37. DOI: 10.1016/j.jtemb.2016.03.015
  34. Interaction of divalent metal ions with human translocase of inner membrane of mitochondria TIM23 / W. Feng, Y. Zhang, H. Deng, S.J. Li // Biochem. Biophys. Res. Commun. – 2016. – Vol. 475, № 1. – P. 76–80. DOI: 10.1016/j.bbrc.2016.05.039
  35. Effects of nuclear respiratory factor-1 on apoptosis and mitochondrial dysfunction induced by cobalt chloride in H9C2 cells / N. Niu, Z. Li, M. Zhu, H. Sun, J. Yang, S. Xu, W. Zhao, R. Song // Molecular medicine reports. – 2019. – Vol. 19, № 3. – P. 2153–2163. DOI: 10.3892/mmr.2019.9839
  36. Hantson P. Mechanisms of toxic cardiomyopathy // Clin. Toxicol. – 2019. – Vol. 57, № 1. – P. 1–9. DOI: 10.1080/15563650.2018.1497172
  37. Liver mitochondrial respiratory plasticity and oxygen uptake evoked by cobalt chloride in rats with low and high re-sistance to extreme hypobaric hypoxia / N. Kurhaluk, O. Lukash, V. Nosar, A.G. Portnychenko, V. Portnychenko, M. Wszedybyl-Winklewska, P.J. Winklewski // Can. J. Physiol. Pharmacol. – 2019. – Vol. 97, № 5. – P. 392–399. DOI: 10.1139/cjpp-2018-0642
  38. CoCl2 induces apoptosis via a ROS-dependent pathway and Drp1-mediated mitochondria fission in periodontal ligament stem cells / Y. He, X. Gan, L. Zhang, B. Liu, Z. Zhu, T. Li, J. Zhu, J. Chen, H. Yu // Am. J. Physiol. Cell. Physiol. – 2018. – Vol. 315, № 3. – P. C389–C397. DOI: 10.1152/ajpcell.00248.2017
  39. Saxena S., Shukla D., Bansal A. Augmentation of aerobic respiration and mitochondrial biogenesis in skeletal muscle by hypoxia preconditioning with cobalt chloride // Toxicol. Appl. Pharmacol. – 2012. – Vol. 264, № 3. – P. 324–334. DOI: 10.1016/j.taap.2012.08.033
  40. L-Ascorbic Acid Protected Against Extrinsic and Intrinsic Apoptosis Induced by Cobalt Nanoparticles Through ROS Attenuation / Y. Liu, H. Hong, X. Lu, W. Wang, F. Liu, H.L. Yang // Biol. Trace. Elem. Res. – 2017. – Vol. 175, № 2. – P. 428–439. DOI: 10.1007/s12011-016-0789-x
  41. Ebert B., Jelkmann W. Intolerability of cobalt salt as erythropoietic agent // Drug. Test. Anal. – 2014. – Vol. 6, № 3. – P. 185–189. DOI: 10.1002/dta.1528
  42. Erythropoietic effects of low-dose cobalt application / T. Hoffmeister, D. Schwenke, N. Wachsmuth, O. Krug, M. Thevis, W.C. Byrnes, W.F.J. Schmidt // Drug. Test. Anal. – 2019. – Vol. 11, № 2. – P. 200–207. DOI: 10.1002/dta.2478
  43. Ascorbate depletion mediates up-regulation of hypoxia-associated proteins by cell density and nickel / A. Karaczyn, S. Ivanov, M. Reynolds, A. Zhitkovich, K.S. Kasprzak, K. Salnikow // J. Cell. Biochem. – 2006. – Vol. 97, № 5. – P. 1025–1035. DOI: 10.1002/jcb.20705
  44. Metal ions-stimulated iron oxidation in hydroxylases facilitates stabilization of HIF-1 alpha protein / M. Kaczmarek, R.E. Cachau, I.A. Topol, K.S. Kasprzak, A. Ghio, K. Salnikow // Toxicol. Sci. – 2009. – Vol. 107, № 2. – P. 394–403. DOI: 10.1093/toxsci/kfn251
    45 Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha / Y. Yuan, G. Hilliard, T. Ferguson, D.E. Millhorn // J. Biol. Chem. – 2003. – Vol. 278, № 18. – P. 15911–15916. DOI: 10.74/jbc.M300463200
  45. Cobalt supplementation promotes hypoxic tolerance and facilitates acclimatization to hypobaric hypoxia in rat brain / K. Shrivastava, M.S. Ram, A. Bansal, S.S. Singh, G. Ilavazhagan // High. Alt. Med. Biol. – 2008. – Vol. 9, № 1. – P. 63–75. DOI: 10.1089/ham.2008.1046
  46. Cobalt chloride induces neuronal differentiation of human mesenchymal stem cells through upregulation of microRNA-124a / E.S. Jeon, J.H. Shin, S.J. Hwang, G.J. Moon, O.Y. Bang, H.H. Kim // Biochem. Biophys. Res. Commun. – 2014. – Vol. 444, № 4. – P. 581–587. DOI: 10.1016/j.bbrc.2014.01.114
  47. Fine-tuning pro-angiogenic effects of cobalt for simultaneous enhancement of vascular endothelial growth factor se-cretion and implant neovascularization / Y.C. Chai, L.F. Mendes, N. Van Gastel, G. Carmeliet, F.P. Luyten // Acta Biomater. – 2018. – № 72. – P. 447–460. DOI: 10.1016/j.actbio.2018.03.048
  48. Effects of cobalt chloride on the stem cell marker expression and osteogenic differentiation of stem cells from human exfoliated deciduous teeth / Y. Chen, Q. Zhao, X. Yang, X. Yu, D. Yu, W. Zhao // Cell. Stress. Chaperones. – 2019. – Vol. 24, № 3. – P. 527–538. DOI: 10.1007/s12192-019-00981-5
  49. Induction of Renoprotective Gene Expression by Cobalt Ameliorates Ischemic Injury of the Kidney in Rats / M. Matsumoto, Y. Makino, T. Tanaka, H. Tanaka, N. Ishizaka, E. Noiri, T. Fujita, M. Nangaku // J. Am. Soc. Nephrol. – 2003. – № 14. – P. 1825–1832.
  50. Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model / T. Tanaka, I. Kojima, T. Ohse, J.R. Ingelfinger, S. Adler, T. Fujita, M. Nangaku // Laboratory Investigation. – 2005. – № 85. – P. 1292–1307. DOI: 10.1038/labinvest.3700328
  51. Cobalt chloride toxicity elicited hypertension and cardiac complication via induction of oxidative stress and upregulation of COX-2/Bax signaling pathway / A.A. Oyagbemi, T.O. Omobowale, O.V. Awoyomi, T.O. Ajibade, O.O. Falayi, B.S. Ogunpolu, U.J. Okotie, E.R. Asenuga [et al.] // Hum. Exp. Toxicol. – 2019. – Vol. 38, № 5. – P. 519–532. DOI: 10.1177/0960327118812158
  52. Curcumin inhibits cobalt chloride-induced epithelial-to-mesenchymal transition associated with interference with TGF-β/Smad signaling in hepatocytes / D. Kong, F. Zhang, J. Shao, L. Wu, X. Zhang, L. Chen, Y. Lu, S. Zheng // Lab. Invest. – 2015. – Vol. 95, № 11. – P. 1234–1245. DOI: 10.1038/labinvest.2015.107
  53. Czarnek K., Terpiłowska S., Siwicki A.K. Selected aspects of the action of cobalt ions in the human body // Cent. Eur. J. Immunol. – 2015. – Vol. 40, № 2. – P. 236–242. DOI: 10.5114/ceji.2015.52837
  54. Nagasawa H. Pathophysiological response to hypoxia – from the molecular mechanisms of malady to drug discovery: drug discovery for targeting the tumor microenvironment // J. Pharmacol. Sci. – 2011. – Vol. 115, № 4. – P. 446–452.
  55. Cell physiology regulation by hypoxia inducible factor-1: Targeting oxygen-related nanomachineries of hypoxic cells / M. Eskandani, S. Vandghanooni, J. Barar, H. Nazemiyeh, Y. Omidi // Int. J. Biol. Macromol. – 2017. – № 99. – P. 46–62. DOI: 10.1016/j.ijbiomac.2016.10.113
  56. Folic acid attenuates cobalt chloride-induced PGE2 production in HUVECs via the NO/HIF-1alpha/COX-2 pathway / Y. Liang, X. Zhen, K. Wang, J. Ma // Biochem. Biophys. Res. Commun. – 2017. – Vol. 490, № 2. – P. 567–573. DOI: 10.1016/j.bbrc.2017.06.079
  57. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel / M. Schmidt, B. Raghavan, V. Müller, T. Vogl, G. Fejer, S. Tchaptchet, S. Keck, C. Kalis [et al.] // Nat. Immunol. – 2010. – Vol. 11, № 9. – P. 814–819. DOI: 10.1038/ni.1919
  58. Cobalt Alloy Implant Debris Induces Inflammation and Bone Loss Primarily through Danger Signaling, Not TLR4 Activation: Implications for DAMP-ening Implant Related Inflammation / L. Samelko, S. Landgraeber, K. McAllister, J. Jacobs, N.J. Hallab // PLoS ONE. – 2016. – Vol. 11, № 7. – P. e0160141. DOI: 10.1371/journal.pone.0160141
  59. Cobalt Chloride Enhances the Anti-Inflammatory Potency of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells through the ERK-HIF-1α-MicroRNA-146a-Mediated Signaling Pathway / J. Kwak, S.J. Choi, W. Oh, Y.S. Yang, H.B. Jeon, E.S. Jeon // Stem. Cells International. – 2018. – Vol. 2018. – 12 p. DOI: 10.1155/2018/4978763
  60. Cobalt ions stimulate a fibrotic response through matrix remodelling, fibroblast contraction and release of pro-fibrotic signals from macrophages / J. Xu, A. Nyga, W. Li, X. Zhang, N. Gavara, M.M. Knight, J.C. Shelton // European Cells and Ma-terials. – 2018. – № 36. – P. 142–155. DOI: 10.22203/eCM.v036a11
  61. Inhibition of histone/lysine acetyltransferase activity kills CoCl2-treated and hypoxia-exposed gastric cancer cells and reduces their invasiveness / S. Ratha, L. Dasa, S. Kokatea, N. Ghosha, P. Dixita, N. Routb, S.P. Singhc, S. Chattopadhyaya [et al.] // Int. J. Biochem. Cell. Biol. – 2017. – № 82. – P. 28–40. DOI: 10.1016/j.biocel.2016.11.014
  62. MicroRNA-21 Mediates the Protective Effects of Mesenchymal Stem Cells Derived from iPSCs to Human Bronchial Epithelial Cell Injury Under Hypoxia / C.-L. Li, Z.-B. Xu, X.-L. Fan, H.-X. Chen, Q.-N. Yu, S.-B. Fang, S.-Y. Wang, Y.-D. Lin, Q.-L. Fu // Cell. Transplantation. – 2018. – Vol. 27, № 3. – P. 571–583. DOI: 10.1177/0963689718767159
  63. Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines / M.G. Permenter, W.E. Dennis, T.E. Sutto, D.A. Jackson, J.A. Lewis [et al.] // PLoS ONE. – 2013. – Vol. 8, № 12. – P. e83751. DOI: 10.1371/journal.pone.0083751
  64. Salnikow K., Zhitkovich A. Genetic and Epigenetic Mechanisms in Metal Carcinogenesis and Cocarcinogenesis: Nickel, Arsenic and Chromium // Chem. Res. Toxicol. – 2008. – Vol. 21, № 1. – P. 28–44. DOI: 10.1021/tx700198a
  65. Regulation of hypoxia-inducible genes by ETS1 transcription factor / K. Salnikow, O. Aprelikova, S. Ivanov, S. Tackett, M. Kaczmarek, A. Karaczyn, H. Yee, K.S. Kasprzak, J. Niederhuber // Carcinogenesis. – 2008. – Vol. 29, № 8. – P. 1493–1499. DOI: 10.1093/carcin/bgn088
  66. Chervona Y., Costa M. The control of histone methylation and gene expression by oxidative stress, hypoxia and metals // Free Radic. Biol. Med. – 2012. – Vol. 53, № 5. – P. 1041–1047. DOI: 10.1016/j.freeradbiomed.2012.07.020
  67. Brocato J., Costa M. Basic Mechanics of DNA Methylation and the Unique Landscape of the DNA Methylome in Metal-Induced Carcinogenesis // Crit. Rev. Toxicol. – 2013. – Vol. 43, № 6. – P. 493–514. DOI: 10.3109/10408444.2013.794769
  68. The hypoxia-mimetic agent cobalt chloride induces cell cycle arrest and alters gene expression in U266 multiple myeloma cells / S. Bae, H.-J. Jeong, H.J. Cha, K. Kim, Y.M. Choi, I.-S. An, H.J. Koh, D.J. Lim [et al.] // International journal of molecular medicine. – 2012. – № 30. – P. 1180–1186. DOI: 10.3892/ijmm.2012.1115
  69. CoCl2 Decreases EC-SOD Expression through Histone Deacetylation in COS7 Cells / S. Hattori, T. Kamiya, H. Hara, M. Ninomiya, M. Koketsu, T. Adach // Biol. Pharm. Bull. – 2016. – Vol. 39, № 12. – P. 2036–2041. DOI: 10.1248/bpb.b16-00551
  70. Effects of Cobalt Chloride, a Hypoxia-Mimetic Agent, on Autophagy and Atrophy in Skeletal C2C12 Myotubes / R. Chen, T. Jiang, Y. She, J. Xu, C. Li, S. Zhou, H. Shen, H. Shi, S. Liu // Biomed. Res. Int. – 2017. – № 7097580. DOI: 10.1155/2017/7097580
  71. A stimuli-responsive drug release nanoplatform for kidney-specific anti-fibrosis treatment / L. Tan, X. Lai, M. Zhang, T. Zeng, Y. Liu, X. Deng, M. Qiu, J. Li [et al.] // Biomater. Sci. – 2019. – Vol. 7, № 4. – P. 1554–1564. DOI: 10.1039/c8bm01297k
  72. The cell death response to the ROS inducer, cobalt chloride, in neuroblastoma cell lines according to p53 status / C. Stenger, T. Naves, M. Verdier, M.H. Ratinaud // Int. J. Oncol. – 2011. – Vol. 39, № 3. – P. 601–609. DOI: 10.3892/ijo.2011.1083
  73. B355252, A Novel Small Molecule, Confers Neuroprotection Against Cobalt Chloride Toxicity In Mouse Hippocampal Cells Through Altering Mitochondrial Dynamics And Limiting Autophagy Induction / U. Chimeh, M.A. Zimmerman, N. Gilyazova, P.A. Li // Int. J. Med. Sci. – 2018. – Vol. 15, № 12. – P. 1384–1396. DOI: 10.7150/ijms.24702
  74. Cobalt (II) Chloride Modifies the Phenotype of Macrophage Activation / M. Kumanto, E.-L. Paukkeri, R. Nieminen, E. Moilanen // Basic & Clinical Pharmacology & Toxicology. – 2017. – № 121. – P. 98–105. DOI: 10.1111/bcpt.12773
  75. Valproic Acid Treatment Inhibits Hypoxia-Inducible Factor 1α Accumulation and Protects against Burn-Induced Gut Barrier Dysfunction in a Rodent Model / H.-M. Luo, M.-H. Du, Z.-L. Lin, L. Zhang, L. Ma [et al.] // PLoS ONE. – 2013. – Vol. 8, № 10. – P. e77523. DOI: 10.1371/journal.pone.0077523
  76. Effects of Histone Deacetylase Inhibitor (Valproic Acid) on the Expression of Hypoxia-inducibleFactor-1 Alpha in Human Retinal Müller Cells / Y.J. Kim, S.J. Park, N.R. Kim, H.S. Chin // Korean. J. Ophthalmol. – 2017. – Vol. 31, № 1. – P. 80–85. DOI: 10.3341/kjo.2017.31.1.80
  77. Functional importance of Dicer protein in the adaptive cellular response to hypoxia / J.J. Ho, J.L. Metcalf, M.S. Yan, P.J. Turgeon, J.J. Wang, M. Chalsev, T.N. Petruzziello-Pellegrini, A.K. Tsui [et al.] // J. Biol. Chem. – 2012. – Vol. 287, № 34. – P. 29003–29020. DOI: 10.1074/jbc.M112.373365
Получена: 
21.05.2019
Принята: 
26.07.2019
Опубликована: 
30.09.2019

Вы здесь