
M.A. Shiryaeva, O.O. Sinitsyna, M.V. Pushkareva, V.V. Turbinsky 

Health Risk Analysis. 2024. no. 4 50 

UDC 614.878.086 
DOI: 10.21668/health.risk/2024.4.05.eng 

Read 
online 

Research article 
 
ALGORITHM FOR PREDICTING WATER QUALITY INDICATORS IN WATER 
BODIES USING A NEURAL NETWORK 

M.A. Shiryaeva1,2, O.O. Sinitsyna1, M.V. Pushkareva1, V.V. Turbinsky1  
1F.F. Erisman Federal Scientific Center of Hygiene, 2 Semashko St., Mytishchi, Moscow region, 141014,  
Russian Federation 
2Russian State Agrarian University – Moscow Timiryazev Agricultural Academy, 49 Timiryazeva St., Moscow, 
127550, Russian Federation 
 

 
Clean and safe drinking water is a fundamental necessity for human health and well-being and a critical component in 

sustainable ecosystem development. In recent decades, water quality issues have become even more urgent due to population 
growth, industrial expansion and climate change. 

A series of works by foreign researchers report results obtained by applying neural networks. There are studies con-
firming results of water quality prediction generated by neural networks to be quite valid. 

In this research, we used Google Earth Pro, Microsoft Excel, water flow sensor based on Arduino UNO board with au-
thor's modification (tail feathering and built-in plugin for calculation of flow velocity), Python, Tensorflows keras2.2.0, 
Scikit-learn, Pandas libraries for machine learning and development of neural network architecture. In this study, two ANNs 
were combined to build a hybrid neural network model for predicting water quality indicators. 

Neural network models offer unique opportunities to improve water resources management at various levels, rang-
ing from local to global one. A key advantage of such models is a possibility to adapt them to specific conditions and re-
quirements, which provides more accurate prediction and timely decision making under uncertainty. The relevance of the 
work is determined by application of neural networks for water quality prediction. This can improve systems for early 
warning about pollution, help optimize operational processes at water treatment plants and develop effective water man-
agement strategies.  

In this research, an innovative hybrid neural network model has been developed for predicting water quality indica-
tors. It is based on integrating deep convolutional neural network and bidirectional recurrent neural network, which consists 
of three functional parts. 

Keywords: neural network, Tensorflows keras2.2.0, water bodies, drinking water, risk factor, negative impact, water 
pollution, determination coefficient, optimization algorithm. 
 

 
Assessment of water resources plays an 

exceptional role in contemporary life, even 
more so, given growing human-induced bur-
dens on water ecosystems and climate change 
manifestations [1, 2, 3]. Rivers, lakes, and res-
ervoirs are main sources of centralized drink-
ing water supply to population; a key compo-
nent in agricultural irrigation; a major source 

of water resources for various industries. They 
also occupy a substantial place in recreational 
infrastructure [4, 5].  

Over the last decades, overall quality of 
water in water bodies has deteriorated consid-
erably due to intensifying human-induced im-
pacts and growing pollution [6]. This calls for 
developing and implementing innovative ap-
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proaches to monitoring and prediction of water 
conditions; they should surpass conventional 
methods in precision, reliability and prompt-
ness in getting required results [7].  

Use of machine learning seems a most 
promising trend within this context. It should 
employ neural networks for simulating and 
predicting dynamics of water quality deter-
minants. Such models are capable of consid-
ering the most complex non-linear interrela-
tions between multiple influencing factors 
and are able to self-learn. This makes them a 
highly effective instrument for solving rele-
vant tasks [8, 9]. 

The aim of this study was to develop 
and employ an innovative algorithm for pre-
dicting quality indicators of water bodies us-
ing a neural network. The aim was achieved 
by step-by-step accomplishment of several 
learning and perfecting stages. Comprehen-
sive study of the existing methods for water 
quality assessment was the primary task. De-
tailed analysis of research publications re-
vealed strong and weak points of various ap-
proaches and assessed their effectiveness in 
variable natural conditions. Due to it, we suc-
ceeded in identifying the most promising 
trends for developing this new innovative al-
gorithm. The next stage involved designing 
our own neural network and matched initial 
parameters and training it using actual data. 
Chemical composition of water was consid-
ered in the process. Maximum precision in 
prediction was successfully achieved by cali-
brating the algorithm. Next, effectiveness of 
the developed neural model was estimated. 
Comparative tests were performed, in which 
prediction results were compared with actual 
data and indicators determined by using con-
ventional approaches. This allowed us to es-
tablish what advantages this new algorithm 
had and where its use would be the most ad-
visable. The final stage involved comparing 
the new approach with conventional proce-
dures, which made it possible to identify ad-
vantages and drawbacks of the suggested 
model. In conclusion, we developed recom-
mendations on using the algorithm in practice 
and established future prospects for further 

improvement. This study makes a substantial 
contribution to solving a strategic task, which 
is to predict quality of water resources.  

Materials and methods. Studies aimed at 
analyzing the sanitary state and water quality 
indicators in dynamics were conducted at a 
section of the Oka River bed that was geo-
graphically a part of Ryazan City agglomera-
tion. It provided a representative example of 
interaction between a large water flow and a 
highly urbanized territory.  

Complex and consistent monitoring of the 
analyzed water flow is necessary for making 
effective predictions of Oka River water qual-
ity. This allows identifying negative trends in 
due time and taking relevant measures aimed 
at preventing sanitary-epidemiological trou-
bles. Optimal location of control points for 
data collection plays the key role in supporting 
highly effective and representative monitoring. 
This location should consider both peculiar 
hydrological conditions of a given river and 
spatial distribution of potential pollution 
sources [10]. Figure 1 provides a draft scheme 
for locating module meteorological stations 
integrated with water auto-sampling systems. 
The red circles represent location of measuring 
devices; the green sector covers the observa-
tion territory of 400 km2; the blue sector shows 
a zone where observations of two neighboring 
stations overlap, which provides necessary 
data excessiveness for obtaining more reliable 
results. 

 
Figure 1. Scheme to show location of module 

meteorological stations 
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The suggested scheme for locating control-
measuring points was developed in order to op-
timize the economic component together with 
preserving the maximum possible effectiveness 
of the systemic monitoring. This is especially 
important given strict budgetary limitations im-
posed on funding allocated for environmental 
protection programs. Use of mathematical 
modeling and optimization techniques, which 
considers hydrological peculiarities of a water 
body, specific distribution of human-induced 
pollution sources and economic limitations, 
makes it possible to reliably determine neces-
sary and sufficient quantity of control-mea-
suring points to effectively cover the whole wa-
ter intake area of the analyzed section of the 
Oka River bed. This quantity ensures systemic 
monitoring and allows predicting sanitary con-
ditions of the river considering multifactorial 
dynamics of external exposures [11]. 

Distances between module stations are: 
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The following theoretical deductions can 
be made based on analyzing the conceptual 
model shown in Figure (1) that describes over-
lap zones covered by operations of hydromet-
ric stations. Each two neighboring stations 
have intersection where boundaries of their 
measuring zones cross; three stations have two 
intersections, and so on in conformity with the 
established regularity.  

By using this tendency, it seems possible 
to predict the necessary quantity of monitoring 
posts to provide full coverage of the analyzed 
water intake basin with control measurements. 
To quantify the required number, we suggest 
building a mathematical model by formulating 
an equation1, the initial parameter (n) in which 
is represented by the number of stations that 
cover an area of 400 km2.  

Then the number of operational zone in-
tersections between the stations in an area of 
266 km2 can be given as (n – 1). Solving this 
equation makes it possible to determine the 
minimal necessary number of hydrometric 
posts to create a regular observation network 
and ensure qualitative hydrometeorological 
monitoring on the whole water intake territory 
as well as to design an optimal configuration 
of the observation network.  

The next equation is then derived: 

   2400 266 1 245,000 k ,mn n    

368 units.n   

Considering the results derived from 
mathematical modeling of the minimum nec-
essary number of hydrometric stations, we can 
conclude that it is advisable to make an obser-
vation network consisting of 368 universal 
module hydrological posts. This will insure 
spatial coverage of the whole Oka River water 
area in order to ensure qualitative monitoring 
of its climatic, hydrochemical and microbi-
ological characteristics. 

Investigations and primary data collection 
relied on using up-to-date software and inno-
vative equipment. This included Google Earth 
Pro, geographical software for spatial analysis 
and data visualization; Microsoft Excel for sta-
tistical and preliminary analysis of the ob-
tained results; a water-surface unmanned 
drone designed by the authors and equipped 
with water autosampler; Garmin Striker Cast 
GPS, a high-precision sonar device for depth 
measurements and creating bathymetrical 
maps of the analyzed river section; as well as 

__________________________ 
 

1 Evgrafov А.V. Metrologiya, standartizatsiya i sertifikatsiya [Metrology, standardization and certification]: manual. 
Moscow, RGAU-MSHA Publ., 2015, 83 p. (in Russian). 
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an innovative water-flow sensor based on Ar-
duino UNO microcontroller board with au-
thors’ modifications that included an opti-
mized tail unit for stabilizing a position in a 
flow and an integrated software plugin for cal-
culating flow velocity based on measured flow 
parameters. 

A specialized software plugin was de-
signed to achieve higher measuring precision 
and expand functional capabilities of the water 
flow sensor based on Arduino UNO microcon-
troller board. It was based on a mathematically 
derived formula for transforming data on water 
flow into flow velocity values considering 
geometrical parameters of the sensor, in par-
ticular, inlet and outlet diameters equal to 
11.9 mm. This ensured the optimal ratio between 
the device sensitivity and its resistance to 
clogging with suspended particles. 

Accordingly, the following formulas were 
introduced into the transformation plugin to 
determine the flow velocity (m/sec) from wa-
ter flow (l/sec): 

 2
4 ,

π · ·1000
WV

D
  (1) 

  2
4 ,

π ·0,0119 ·1000
WV       

where π 3.14 , W means baseline data of the 
water flow sensor (l/sec), D is the inlet and 
outlet diameters of the sensor (mm). 

The complex model for machine learning, 
which was developed within this study, will 
primarily allow achieving more effective pre-
diction of quality of surface waters as a strate-
gically important water supply source, first of 
all, by estimating its conformity to safe stan-
dards. It will also help develop scientifically 
grounded recommendations for industrial en-
terprises, agricultural complexes and other po-
tential pollution sources how to minimize nega-
tive impacts on a water body and reduce vol-
umes of pollutants discharged into it [12, 13]. 

Data on water chemical composition were 
obtained by laboratory tests.  

The algorithm for complex prediction of 
water quality, which is suggested in this study, 
includes the following successive stages. 

Stage 1: Data cleansing. Prior to direct 
prediction of water quality, the iForest method 
is employed to detect anomalies in a data array 
on water quality Xn×m (where n is the number 
of water quality indicators and m is the number 
of data groups; within this study, n and m are 
constants: n = 9, m = 1360); these detected 
anomalies are replaced with null values. Later 
the Lagrange interpolation is used to fill in the 
null values since the method ensures data in-
tegrity and continuity [14, 15]. 

Stage 2: Data expansion. At the first 
stage, a predicted goal is removed from the 
data array Xn×m and, as a result, a new data ar-
ray Xn×(m-1) is created. Bearing in mind, that 
data on water quality are collected with a  
4-hour interval, the data windowing method is 
employed for averaging with a window size 
equal to 6 in order to create a set of moving 
averages Zn×(m-1). This minimizes influence 
exerted by accidental factors of variations in 
data on water quality and allows more precise 
tracking of daily changes in water quality indi-
cators. At the second stage, the principal com-
ponent analysis (PCA) is used to decrease 
Xn×(m-1) dimensionality and to preserve two 
principal components P2×m. To prevent the 
model from overtraining, Zn×(m-1), P2×m and 
data on water quality Xn×(m-1) are simultane-
ously introduced into the model input without 
any target parameters, whereas a target predic-
tion is formed at the model output.   

Stage 3: Model training. The available 
data array on water quality is divided into a 
training dataset and a test dataset in the ratio  
8:2. Within this study, the training dataset in-
cluded 1100 dataset that covered the period 
from June 25, 2021 to February 16, 2022, 
whereas the test dataset included 272 datasets 
collected over the period from February 17, 
2022 to April 01, 2022. The data windowing 
technique is employed, taking into account a 
long-term relationship between data on water 
quality and time factors [16, 17], to divide the 
training set into fixed training windows with a 
step of the i length in time sequence. After 
that, data of the first j training windows are 
used to predict a j+1 training window. In each 
new cycle, the oldest window is excluded from 
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the analysis and the next new window is in-
cluded into it and the process continues until 
the last training window is reached. Such an 
approach, which involves excluding stale data, 
ensures the model training considering future 
trends. At the final stage, in accordance with 
the test dataset for each station, the trained 
model is used to predict key water quality in-
dicators including total nitrogen and phosphor 
levels as well as permanganate oxidability.  

Within the accomplished complex re-
search, a comprehensive assessment was per-
formed to establish effectiveness of the sug-
gested hybrid neural network model for  
predicting water quality indicators, which in-
cluded comparative analysis with reference 
methods employed in the sphere. To obtain 
quantitative characteristics of prediction preci-
sion, several conventional metrics were ap-
plied including mean absolute error (MAE), 
which describes average difference between 
predicted and actual values; mean absolute 
percentage error (MAPE), which estimates a 
relative value of prediction error; root-mean-
square error (RMSE), which considers squared 
differences and gives greater weight to big er-
rors; as well as the determination coefficient 
(R2), which characterizes a share of depend-
able variable dispersion explained by the 
model [18]. 

At the initial stage in the study, the isola-
tion Forest method (iForest) was applied as an 
effective algorithm for detecting anomalies in 
multidimensional data arrays. With its use, 
spikes in initial dada on water quality at the 
analyzed stations were identified and quanti-
fied. They were equal to approximately 1.1, 
1.7 and 3.2 % of the total data volume respec-
tively. All detected spikes, which could influ-
ence the model precision considerably, were 
removed thoroughly; after that, the remaining 
null values amounted to approximately 3.9, 4.5 
and 5 % for the stations 1–3 respectively. This 
required using certain methods for data recov-
ery; in particular, the Lagrange interpolation 
was employed to recover the continuous func-
tion per the discrete set of points. 

To assess whether it was acceptable to use 
the developed model in practice, conventional 

prediction models ARIMA and SMA were 
tested within this study. 

ARIMA (Autoregressive Integrated Mov-
ing Average) and SMA (Simple Moving Aver-
age) models are very popular for predicting 
time series, water quality included. ARIMA 
models consider autocorrelation and autore-
gression in data, which allows them to capture 
dynamics of changes in water quality over 
time. SMA is eligible for predicting water 
quality with more stable time series and fewer 
spikes. 

Results and discussion. The accom-
plished complex study included assessment of 
qualitative characteristics of water resources in 
the Oka River, which was considered a surface 
water supply source. The assessment was 
based on analyzing average long-term values 
of 52 control indicators including organoleptic, 
microbiological and chemical ones over a long 
period between 2014 and 2022. The research 
results showed that water taken at the Soko-
lovskii water intake had a considerably lower 
average long-term ammonia level equal to 
0.48 mg/l, which was considerably lower than 
the same indicators established at the Okskii 
and Borkovskii water intakes, 1.6 and 2.1 
times respectively (p < 0.05). It should be 
noted that ammonia concentrations above its 
maximum permissible level (MPL) were de-
tected in practically each fifth sample taken at 
the Borkovskii water intake gates, whereas the 
same indicator established for the Okskii water 
intake was 2.8 times lower and amounted to 
7.5 %. It is interesting that ammonia ions in 
levels higher than MPL were not found in any 
one-time water sample taken at the control 
point of the Sokolovskii water intake. Statisti-
cal analysis did not establish any significant 
differences in average long-term chemical 
oxygen demand (COD) or biochemical oxygen 
demand (BOD5) in water of the analyzed water 
intakes. The proportion of one-time samples, 
in which the analyzed indicators did not con-
form to safety requirements, varied within 
22.7–32.5 and 61.8–75.0 % respectively. Our 
study also showed that average levels of total 
coliform bacteria (TCB) amounted to 813.3 
and 818.9 CFU/100 ml in water from the  
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Okskii and Borkovskii water intakes respec-
tively; this was 1.5 times higher against the 
levels established at the control gates of the 
Sokolovskii water intake (р < 0.05). Some tests 
results are shown in the graphs (Figure 2). 

In this study, an innovative hybrid neural 
network model was developed for predicting 
water quality indicators. It was based on inte-
grating a deep convolutional neural network and 

 

 
Figure 2. Some water quality indicators for the Oka 
River established at three analyzed water intakes for  

the period 2014–2022, where: a shows the mean values; 
b, the minimum values; c, the maximum values 

bidirectional recurrent neural network, which 
consisted of three functional parts. At the initial 
stage, the model is employed to identify and ex-
tract potential non-linear interrelations between 
time series data about water quality in the Oka 
River in order to create effective low-dimensional 
attributes. Next, a vector of water quality indica-
tors is built based on the extracted attributes. This 
vector is used as an input signal for the network 
of the deep convolutional neural network. When 
being trained, the network regulates weights and 
shifts constantly considering dependence of short-
term, long-term and contextual attributes of a data 
time series for further optimization of data on wa-
ter quality in order to achieve higher precision in 
attribute expression. At the final stage, the layer 
of complete connection becomes involved at the 
upper part of the model. It serves as an output 
layer for generating predicted values of water 
quality indicators.  

The developed hybrid neural network 
prediction model was realized as software us-
ing highly-productive library for deep learning 
Tensorflows keras, version 2.2.0, which pro-
vides a wide range of instruments employed to 
build and train neural networks. The model 
training went on for 50 epochs using 120 time 
intervals, which allowed achieving an optimal 
balance between prediction precision and 
computational expenses. The Adam method 
was employed as an optimization algorithm for 
correcting the model weights and shifts. It 
combines advantages provided by adaptive 
gradient descend methods and the method of 
moments. When the model convergence was 
reached indicating that the loss function was 
minimized, final weight coefficients were ob-
tained, which were later used to predict water 
quality at the analyzed water intake stations 
(Sokolovskii, Okskii and Borkovskii). The 
model architecture and parameters were se-
lected thoroughly and presented in the follow-
ing way: the number of hidden layers was two, 
which enabled the model to effectively detect 
complex non-linear relationships in data; the 
conjugate gradient method was selected as an 
optimization algorithm due to its known capa-
bility to rapidly converge to an optimal solu-
tion; minimal relative change in the training  
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Figure 3. Predictive results obtained for the ammonia level at the Okskii water intake based on neural network 
in comparison with existing neural network models and the classical moving average model. Baseline data 

 (period of 1–5 years – elapsed time period) 

error coefficient was fixed at 0.001, which en-
sured the relevant balance between the model 
precision and prevented of overtraining. 

This allows using this neural network 
model to fill in gaps in data by calculating 
missing concentrations of certain chemicals. 
Some results obtained by using neural net-
work modeling that cover a 25-year observa-
tion period (n = 25) are shown as an example 
in Figure 3 for the ammonia level as a water 
quality indicator at the Okskii water intake. 
The obtained regularities can be used for pre-
dicting future dynamics of the analyzed indi-
cators. 

To determine whether it was acceptable 
to use the developed neural network model, it 
was compared with the classical moving av-
erage model (Figure 3, observed forecast 
data). This method was selected due to being 
quite a common technique for analyzing time 
series such as nitrate levels in water [19, 20]. 
It helps identify trends by reducing influence 

of accidental fluctuations and noise in data 
sets. 

The moving average (MA) method in-
volves calculating an average value of several 
previous data points for each time moment. 
The formula for moving average calculation is 
given as: 

 1 2 ,t n t n t
t

X X XSMA
n

    
    (2) 

where SMAt  is the moving average value at 
the time moment t; 

X are observed values (for example, nitrate 
levels); 

n is the number of periods (interval) for 
smoothing. 

The coefficient α determines a weight, 
which is given to the latest observation: higher 
α values lead to more rapid response to 
changes in data. 

To analyze levels of pollutants, both 
methods were employed for data smoothing 
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per time series and identification of long-term 
trends: 

1. Moving average makes data on pollut-
ant levels more stable and helps visualize 
trends in changes over time. 

2. Exponential smoothing ensures more 
rapid response to changes in pollutant levels, 
which is especially useful in case data are sus-
ceptible to drastic variations. 

In addition to SMAt (Figure 3, observed 
forecast data), we applied the conventional 
prediction using ARIMA (Autoregressive In-
tegrated Moving Average or a statistical analy-
sis model, which uses time series data to pre-
dict future values in a series). 

In this study, we suggest considering an al-
ternative approach to water quality prediction. It 
relies on using neural networks for analyzing 
large historical data arrays and this method is 
fundamentally different from conventional 
mechanistic models, which are widely used for 
the purpose. Mechanistic models for water quality 
prediction that include such well-known systems 
as QUAL, WASP, MIKE, SWAT, BASINS and 
some others are based on detailed description of a 
structure of an analyzed water system and on con-
sidering multiple limitations associated with a set 
of physical, biological and chemical processes in 
water environment. This determines their com-
plexity and requires substantial volumes of input 
data to create and then solve a system of equa-
tions that describe changes in water quality in dy-
namics over time and space [21–23]. 

Despite being common and recognized by 
experts society, mechanistic models tend to be 
very complex in their essence and require large 
scopes of input data including multiple model-
ing parameters, conditions of water sources and 
pollution discharges as well as other specific 
characteristics of water environment. A process 
of building such models is extremely labor-
consuming and also it is very difficult to iden-
tify optimal model parameters; this imposes 
substantial limitations on their applicability for 
a wide range of water bodies, especially if data 
on their hydrological and sanitary conditions 
are insufficient and not detailed [24, 25]. 

The suggested neural model, which is 
based on up-to-date deep architectures, has 

turned out to be very effective in solving the 
task. Underlying non-linear multi-layer mecha-
nisms for data analysis make it possible to re-
veal complex interrelationships between water 
quality indicators and external factors thereby 
creating significant predictions. The accom-
plished investigations confirmed high predic-
tion reliability due to the model being capable 
of analyzing and predicting non-linear proc-
esses in uncertain conditions quite effectively.  

In addition, the model is universal and 
eligible for variable water bodies including 
rivers, lakes and reservoirs. This substantially 
expands the sphere where the model could po-
tentially be used for water quality monitoring 
and management of water resources. An obvi-
ous advantage the model has in comparison 
with traditional numeric algorithm is deter-
mined by its higher prediction precision and 
computational effectiveness. This model pro-
vides new opportunities for developing prom-
ising approaches to water quality monitoring 
and management of water resources. 

Prediction of nitrate levels using time se-
ries models such as ARIMA (Autoregressive 
Integrated Moving Average) is a powerful 
method for data analysis, which considers 
trends, seasonality, and autocorrelation. With 
this procedure, we are going to consider sev-
eral steps necessary for the ARIMA model 
implementation and present relevant formulas. 
Over the last few decades, investigations with 
their focus on time series predictions have 
been mostly concentrating on two approaches 
[26]. One of them is based on mathematical 
statistics, for example, on autoregression mod-
els or integrated moving average (ARIMA). 
These models often have advantages in a situa-
tion when a data array in a time series is small 
since they require relatively smaller data vol-
umes for assessment of model parameters [21]. 

Historical data on nitrate levels at water 
intake gates have been collected. The data 
are given as a time series, where each ele-
ment corresponds to a nitrate level at a cer-
tain time moment. ARIMA is denoted as 
ARIMA (p, d, q), where p is the autoregres-
sion order, d is the differentiation level, q is 
the moving average order. 
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The graphs ACF (Autocorrelation Func-
tion) and PACF (Partial Autocorrelation Func-
tion) were applied to establish p and q values. 
ACF shows time series autocorrelation at dif-
ferent lags. If ACF declines rapidly, then q can 
be low. PACF shows partial autocorrelation 
and can help establish p. 

Next, the ARIMA model was built [27]: 

     1 1 2 2

1 1 2 2 ,
t t t p t p

t t q t q t

Y Y Y Y
e e e e

  

  

    

   
   (3) 

where Ф are the AR model coefficients,   are 
the MA model coefficients, te  is the error. 

The model parameters were estimated by 
using the maximum likelihood method. The 
model quality was tested by using the AIC 
(Akaike Information Criterion) and BIC 
(Bayesian Information Criterion). 

Next, prediction was accomplished using 
the assessed ARIMA model: 

1 1

ˆ ˆ ˆ ,
p q

t h t i t i j t j
i j

Y Y Y e  
 

       (4) 

where h is the time horizon. 
This procedure is a structured approach to 

predicting pollutant levels in river water in-
takes using the ARIMA model [27, 28]. Water 
quality management can be improved consid-
erably due to precise predictions, which allow 
making more grounded decisions on protection 
of ecosystems and human health.  

To estimate advantages and drawbacks of 
the suggested prediction model and other eta-
lon neural networks, such as LSTM and a re-
verse recurrent one, we compared mean aver-
age error (MAE), which shows average differ-
ence between predicted and actual values; 
mean average percentage error (MAPE); root-
mean-square error (RMSE), which consider the 
square of differences; the determination coef-
ficient (R2) (Table). The ARIMA model was 
selected as the etalon method. The developed 
model yielded the highest results in compari-
son with the etalon ARIMA model and the re-
verse recurrent neural network model. The 
multi-convolutional model turned out to be the 
strongest competitor; its root-mean-square er-
ror value was 0.0557 whereas it was 0.0248 
lower in the developed model (that is, the av-
erage RMSE = 0.0309). 

To visualize the comparison results, a 
graph was built to show the results for ammo-
nia levels at the Okskii water intake obtained 
by using the conventional ARIMA model and 
the developed neural network (Figure 4). 

The developed neural network underesti-
mated the analyzed indicator for 2021 in train-
ing on input data over 2018–2022 (the 4th year 
is the corresponding indicator in the graph). 
The developed neural network provided un-
derestimated ammonia levels in comparison 
with the etalon ARIMA model. However, pre-
cision of the developed neural network was 
higher than that of the ARIMA model 
(RMSEARIMA is higher than RMSENN by 1.17). 

The determination coefficient and root-mean-square error beamed by using the developed 
neural network model: comparison with the parameters already established for the Okskii 

water intake  
Neural network 

Quality  
indicator 

Parameters  
of statistical  

analysis model 

Autoregression – 
Integrated Moving 
Average (ARIMA)

Reverse recurrent 
neural network 

Multi-
convolutional 

LSTM 

Developed neural  
network (convolutional + 
bidirectional recurrent) 

R2 0.9408 0.9920 0.9996 0.9996 BOD, mgO2/l RMSE 1.2030 0.5360 0.0566 0.0299 
R2 0.8760 0.9933 0.9999 0.9996 Total nitrogen, 

mg/l RMSE 1.0000 0.5400 0.0542 0.0315 
R2 0.9400 0.9945 0.9999 0.9999 Ammonia RMSE 0.9850 0.5466 0.0520 0.0310 
R2 0.9308 0.9900 0.9996 0.9999 O2, mg/l RMSE 1.0000 0.5280 0.0600 0.0312 
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Figure 4. Comparison of mean ammonia levels per observation data (period of 1–5 years equal to 2018–2022) 

obtained by using classical ARIMA prediction and developed neural network for the Okskii water intake 

Conclusion. The laboratory test results 
showed that water taken at the Sokolovskii 
water intake had a considerably lower average 
long-term ammonia level equal to 0.48 mg/l. 
This was substantially lower than the same 
levels established at the Okskii and Borkovskii 
water intakes, which were 1.6 and 2.1 times 
higher respectively (p < 0.05). We did not es-
tablish any considerable differences in average 
long-term levels of chemical oxygen demand 
(COD) and biochemical oxygen demand 
(BOD5) in water taken at the analyzed water 
intakes. The proportions of one-time samples 
with these indicators deviating from the valid 
safe standards varied within the range between 
22.7 and 32.5 % for COD and between 61.8 
and 75.0 % for BOD5. 

To provide high reliability, most ad-
vanced approaches to data processing were 
applied at the preliminary stage of the accom-
plished study including the isolating forest al-
gorithm and the Lagrange interpolation. This 
made it possible not only to effectively raise 
the integrity of the data array but also to 
minimize potential impacts exerted by inaccu-
racies and anomalies on the subsequent model-
ing. In addition to preliminary data processing, 
the moving average method and the principal 
component analysis were applied; they al-
lowed optimizing water quality indicators and 
preventing the model overtraining, which was 
a crucial factor for providing high precision of 

prediction calculations in the long-term out-
look. Therefore, we developed an innovative 
hybrid neural network model for predicting 
water quality indicators based on integration of 
a deep convolutional neural network and bidi-
rectional recurrent neural network, which con-
sisted of three functional parts. 

The results obtained by experimental ap-
probation of the developed model clearly 
demonstrate high stability and generalizing 
capability of the suggested approach, which is 
manifested through lower prediction inaccu-
racy in comparison with the conventional 
methods. This also provides new prospects for 
using this concept in prediction of one-
dimensional time series of various objects 
within natural sciences and technical analysis 
in comparison with such models as Auto-
regression Integrated Moving Average 
(ARIMA) or reverse recurrent neural net-
works. The multi-convolutional model turned 
out to be the strongest competitor; its root-
mean-square error value was 0.0557. At the 
same time, it was 0.0248 lower in the deve-
loped model, which means that the average 
RMSE = 0.0309. 

The accomplished study with its focus on 
using recurrent neural networks to predict pol-
lution of the Oka River, a key water body in 
Central Russia, allows making a well-
grounded conclusion that precise and timely 
prediction of changes in water quality is quite 
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possible. This provides new opportunities for 
implementing effective environmental-pro-
tection activities and providing sustainable de-
velopment of the region in the long-term out-
look. Use of the developed model to predict 
dynamics of the Oka River pollution for the 
next two decades provides a unique opportu-
nity to reveal potential environmental hazards 
and to take revenant actions to prevent them. 

This is significant step towards more effective 
preservation of natural resources, provision of 
sanitary-epidemiological safety and improve-
ment of life quality of the regional population. 
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