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The present work focuses on describing a procedure for assessing intensive and cumulative parameters of specific risk 

when observing cohorts under combined exposure to several external or internal factors. 
The research goal was to reveal how to use well-known heuristic-descriptive parameters accepted in remote conse-

quences epidemiology for analyzing dynamics of countable events in a cohort; analysis should be performed on quite 
strict statistic-probabilistic grounds based on Bayesian approach to explaining conditional probabilities that such count-
able events might occur. The work doesn’t contain any new or previously unknown epidemiologic concept or parameters; 
despite that, it is not a simple literature review. It is the suggested procedure itself that is comparatively new as it com-
bines techniques used to process conventional epidemiologic information and a correct metrological approach based on 
process description. 

The basic result is providing a reader with understanding that all basic descriptive epidemiologic parameters 
within cohort description framework turn out to be quantitatively interlinked in case they are considered as conditional 
group processes. It allows simultaneous inter-consistent assessment of annual risk parameters and Kaplan – Meier 
(Fleming – Harrington) and Nelson – Aalen cumulative parameters as well as other conditional risk parameters or their 
analogues. It is shown that when a basic descriptive characteristic of cumulative parameters is chosen as a measure for 
measurable long-term external exposure, it is only natural to apply such a concept as a dose of this risk factor which is 
surrogate in its essence. Operability of the procedure was confirmed with an example. The suggested procedure was 
proven to differ from its prototype that previously allowed achieving only substantially shifted estimates, up to ~100 % 
even in case an operation mode was normal. Application requires creating specific but quite available PC software.   

Key words: risk, parameter, epidemiology, risk factor, competition, indirect estimate, mortality, process, cohort, 
strata, model. 
 

 
There is a well-established opinion on a 

health risk being an objective probability that 
this or that undesirable event will occur in fu-
ture [1–3] due to certain conditions/factors in-
cluding a period of observation. Such exam-
ined undesirable events are usually death, a 
disease or, a bit less frequently, sub-clinical 
irreversible changes in a person’s health that 
are reliably diagnosed. Accordingly, a risk can 
be given quantitatively as a certain numeric or 
functional indicator. In prediction practices it 
can characterize an event that hasn’t yet oc-
curred; however, it is rather difficult to reach a 
stage at which risks can be managed if experi-
ence gained via observing similar events in 
similar conditions hasn’t been generalized, that 

is, risks have not been assessed a posteriori as 
per previously collected data. In that respect a 
task related to risk measuring is similar to a 
metrological procedure used for determining a 
certain unknown (but objectively existing) 
value or to an establishing a correlation be-
tween a risk indicator and conditions for its 
potential realization. This logical scheme con-
tains a seeming internal contradiction related 
to the fact that a concept of probability implies 
“randomness” category being active and this 
category contradicts “link” category since the 
latter is a determined one. Yes, randomness is 
present here and it produces its effects but still 
there is no contradiction. It makes sense to ap-
ply “risk” category only if there is a probable 
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alternative course of events. However, risk 
factor can be present here as this or that de-
termined combination thus creating “factors – 
risk” link which is quite real; this dependence 
should be examined thoroughly prior to a stage 
at which risks are managed. 

Let us note that “risk” as a concept has 
certain properties that are purely mathematical 
and make risk assessment procedures rather 
complicated. A link or a potential link with 
risk factors indicates that we deal with a condi-
tional probability. Further complications arise 
due to time or age being usually taken as a risk 
factor when specific health risks are analyzed; 
therefore, we can conclude that health risk is 
not only an indicator (a number) but also a dy-
namic random process. And finally, if there is 
a task aimed at eliminating influences exerted 
on a metrological procedure by random or un-
controllable factors, this risk can never be as-
sessed individually since assessment is possi-
ble only for a homogenous group of individu-
als as a certain biological property which is 
common for them. 

Intensive risk rate1 of common or specific 
mortality or morbidity, which is also known as 
“force of mortality”, “hazard rate”, or “instan-
taneous incidence rate”, is a typical and widely 
spread rate used in descriptive occupational 
epidemiology, clinical epidemiology, medical-
ecological and demographic research [4, 5]. 
When remote consequences are described us-
ing this value, it is usually attributed to a year 
on an age scale or calendar scale as the most 
commonly used time unit. A series of risk 
rates is usually used as a measurement due to 
its dynamics being quite reproducible when 
describing remote consequences of a wide 
range of effects, for example, non-communi-
cable diseases for a great number of isolated 
sub-cohorts or sub-populations that live in 
similar socioeconomic conditions. It allows 
considering an intensive risk rate taken in its 
overall dynamics practically as a species-spe-
cific property. This circumstance, for example, 

is a reason for regular regional screening of all 
oncologic morbidity and mortality exactly as 
per the above mentioned rate [4]. As a rule, it is 
exactly this parameter with its excessive values 
being equal to 0.001‒1 ‰ per year serving as 
permissible risk limits2 which is taken by regu-
latory authorities as a sign that it is time to 
make relevant decisions. Intensive group risk 
rate is also known as “individual risk”, how-
ever, this name is incorrect since it contradicts 
its group essence. 

An insight into the given rate and its di-
rect link with risk value and other objective 
parameters can be easily derived from a simple 
example published in the work [5] and given 
in Table 1.  

T a b l e  1  
An example of a 5-year cohort study 

 Exposed No exposed 
Died due to the cause 30 10 
Didn’t die due to the cause 70 90 
Total 100 100 

 
In this example, two population groups 

(strata) with practically the same structure 
were observed over a relatively short period of 
time T 5; the only difference between them 
was that one group was exposed to a certain 
risk factor while the other was not, and it is 
influence exerted by this factor that we are try-
ing to assess. If a risk is a probability that a 
person will die due to the examined cause, 
than its assessment amounts to obvious 30 out 
of 100 cases in the exposed group or 

eR  0.30; similarly, in the non-exposed group 

nR 10/100 = 0.10. Then excess risk of death 
due to the examined cause amounts to 
0.3‒0.1 = 0.2; it is quite natural to relate it to 
effects produced by exposure to a risk factor. 
Relative risk for these effects is calculated as 

e nRR R R 3.0. 
These given values are cumulative death 

cases over the observed 5-year period. They give 
__________________________ 
 
1 Epidemiologic glossary. In: D.М. Last for the International epidemiologic association, eds. 4th edition, 316 p. 
2 R 2.1.10.1920-04. The guide on assessing population health risks caused by exposure to chemicals that pollute the envi-

ronment. Moscow, The Federal Center for State Sanitary and Epidemiologic Surveillance of the RF Public Healthcare Ministry 
Publ, 2004, 143 p. 
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an opportunity to assess intensive rates relaying on 
the following ratios   1 expe e eM N h T     
and   1 expn n nM N h T     as well as on an 
assumption that intensive rates are constant in 
both exposed and non-exposed group. Here 

,e nM M  are a number of “cases” in the ex-
posed and non-exposed strata; ,e nN N  is an 
initial number of people in the strata; ,e nh h  are 
“hazards” or annual risk rates. Exponents oc-
curring in these formulas indicate that ,e nh h  
values are sliding, that is, related to a condition 
that a person reaches the current age within the 
observed period; whereas cumulative rates 

,e nR R  refer to the whole observation period in 
comparison with the initial state of sub-strata. 
Due to it, ,e nh h  values are similar to continu-
ous rate of discounting in economic theory as 
per their mathematical properties thus creating 
a link with exponential ratios. Their calcula-
tion brings the following results: 71eh  ‰ 
per year and 21eh ‰ per year accordingly. 
Hazard ratio is e nHR h h 3.38 3.0RR   
under effects produced by a factor. 

If we neglect this ambiguous interpreta-
tion of a relative risk and return to the heading 
of our work, it is quite relevant to ask – why is 
it a problem to assess rates in a heterogeneous 
cohort? It seems so simple if we look at the 
example given in Table 1. But at the same 
time, methodological issues here are multiple. 

1) ( )h h t  rate is not actually a number 
but a function of an age or time, that is, a proc-
ess; whereas assessments given in Table 1 were 
reduced to simple scalar (numeric) values; 

2) Table 1 is based on only one factor that 
influences the risk whereas when it comes 
down to a real sampling or a cohort, it is al-
most always a multi-factor study. It requires a 
specific procedure for statistical assessing that 
involves stratifying a heterogeneous cohort 
into more than two strata taking into account 
all relevant combinations of risk factors; 

3) as we can see, neither h  intensity nor 
its cumulative analogue h T  are not directly 
observed values. Contradicting (and outdated) 

beliefs are still alive due to a known approxi-
mated property of the value h  that allows cal-
culating it as a “ratio of a number of specific 
cases to a number of person-years under risk”1. 
But it is a mistake to believe that this ap-
proximated property is an exact definition. In 
fact, it is dynamics of countings given in Table 
1, both in cumulative and individual forms, 
that is initial empirically observed data. This 
circumstance leads to a task to accomplish an 
indirect assessment of ( )h t  process or its cu-
mulative analogue as per observing countings 
accumulation in each homogenous stratum in 
the cohort; 

4) countings in a homogenous stratum 
which is a part of a random sampling, are also 
random. It is necessary to assess a parameter 
of a certain homogenous and almost general 
aggregate. Due to it parameters can be as-
sessed with certain relative uncertainty which 
tends to be the greater, the fewer is a number of 
cases in examined cohort/strata. For example, 
interval assessments of cumulative risks for the 
examined exposed and non-exposed strata (with 
95 % confidence probability) amount to 

eR  0.219…0.396 and nR 0.056…0.175, and 
we can clearly see that uncertainty range is 
wider than the central assessment for the non-
exposed group. It practically forbids us to 
work with small strata with a number of 
“cases” in them being lower than 4 since ex-
tended relative risk uncertainty will certainly 
exceed 100 %. It is completely impossible to 
reliably identify any process relaying on fewer 
than 4 points although statistically significant 
differences between strata may occur even 
with a smaller number of cases [6]. Therefore, 
it is necessary to create such an assessment 
algorithm that could preserve all advantages 
gained due to factor space stratification to-
gether with an opportunity to indentify optimal 
model dependence for risks that takes into ac-
count relations with all risk factors for the 
whole set of strata simultaneously. 

Therefore, it is vital and natural to make 
an attempt to create an algorithm for assessing 
intensive and cumulative specific risk rates in 
a heterogeneous cohort basing on data ob-
tained via a long-term observation period. 
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Description of the assessment procedure 
and its prototype. Let us note that an issue re-
lated to heterogeneity of actual observations has 
long been of interest when it comes down both 
to cohort samplings and population studies on 
medical and demographic problems [7]. There 
are a lot of established various reasons for het-
erogeneity that are observed while sampling 
representatives are still alive or revealed after 
their death including non-observable hidden 
factors [8]. 

Without claiming to cover everything, we 
are going to concentrate on examining influ-
ence exerted by only a priori known risk factors 
and to assume that latent variables are absent. 
We can only rely on a researcher-physician’s 
intuition when he or she keeps registers and 
collects initial epidemiologic data. It allows 
grouping individual by strata even before 
mathematical data analysis starts with the pos-
sibility to permanently bind them to their pre-
defined strata during the entire observation 
period. It is implicitly assumed that all people 
in a specific stratum have the same chance to 
fall sick or die to any examined disease coded 
in the ICD-9 or ICD-10. It is especially easily 
achieved regarding risk factors that can be de-
scribed via binary attributes, for example, sex, 
or smoking status (smokes / doesn’t smoke). 
Even an interfering disease in case history in a 
period of observation can be a binary attribute. 
Such factors can be considered almost immu-
table over a long period of time. Certain quan-
titative factors that exert their impacts on 
health can also turn out to be useful for the 
chosen stratification scheme in case intensity 
of their influence is the same for all cohort 
members. It is obvious for acute single expo-
sure or chronic even exposure with the same 
individual intensity. In this case, it is possible 
to introduce such a (surrogate) cumulative fac-
tor as a dose accumulated by the end of obser-
vation period. In this case it seems only natural 
to analyze conditional dependence for “cumu-
lative risk – cumulative dose” pair. 

This approach has its functional prototype 
in epidemiology, AMFIT module in Epicure 
software package3. This software has been 
successfully applied in epidemiologic research 
all over the world [9, 10]. In particular, it was 
approved on as the software standard for radia-
tion and epidemiologic studies: “… Epicure is 
the de-facto standard for modeling radiation 
health effects …” [11]. Practically all national 
standards for radiation safety in countries 
where radiation-hazardous objects are located, 
including Russia4, are based on results ob-
tained with AMFIT (Poisson regression). And 
it is considered to be established that an 
equivalent radiation exposure dose is a com-
monly recognized risk factor of remote radia-
tion-oncologic consequences. 

The approach which we suggest in this 
work is a bit different from AMFIT in spite 
of common goals. There are three basic dif-
ferences: 

а) if we stick to strictly probabilistic ap-
proach, then observations can’t be described 
and composed function of their aggregate as-
sessment can’t be built via applying Poisson 
distribution for countings of “cases” in strata 
since Poisson statistics is suitable only for de-
scribing rare events in an unlimited sampling. 
Actual cohorts cease to be unlimited even in 
the rough sooner or later as their members die. 
It is necessary to describe deviations from a 
basic trend (process) more correctly basing on 
binomial statistics which is suitable for limited 
samplings and is not bound to a condition that 
events should be rare; 

b) AMFIT algorithm is based on assessing 
intensity of specific events at the expense of 
assessing related cumulative parameters. 
Meanwhile, intensity is not a directly observed 
descriptive characteristic; however, the Kap-
lan – Meier cumulative estimator can be suc-
cessfully used instead of it since it is directly 
linked to individual countings of “cases” and 
random binomial deviations. Application of 
this rate would allow achieving more sustainable  

__________________________ 
 
3 EPICURE User’s Guide. In: D. Preston, J. Lubin, D. Pierce, M. McConney eds. Seattle, Hirosoft, 1988–1993, 334 p. 
4 SER 2.6.1.2523-09. Radiation safety standards (NRB-99/2009). Moscow, The Federal Center for Hygiene and Epide-

miology of Rospotrebnadzor, 2009, 100 p. 
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Figure 1. Markov structure scheme for dropping 
out from observation for two competing causes 
of death. There is an initial state compartment 

and two compartments for two registered causes 
of death 

assessments and simultaneously preserving an 
opportunity to calculate intensity of events; 

c) AMFIT algorithm is based on maxi-
mum likelihood as it was interpreted by 
Ronald Fischer which, strictly speaking, is 
not probabilistic and has purely heuristic ba-
sis just as its prototype, Karl Gauss’ maxi-
mum likelihood [12]. 

Although any algorithm used for statisti-
cal processing yields biased estimates, we can 
still hope that measuring precision can be im-
proved significantly due to eliminating draw-
backs of AMFIT algorithm which has already 
been applied successfully and therefore can 
easily be taken as a prototype. 

A relation between intensive and cumu-
lative conditional statistical parameters and 
epidemiology of long-term effects. A desire 
to assess epidemiologic rates objectively re-
quires applying a bit more profound mathe-
matical apparatus than that used to process 
data given in Table 1. However, this mathe-
matics shouldn’t mislead anybody regarding 
an intention to move to analytical epidemiol-
ogy sphere. Our described procedure still cor-
responds to common descriptive statistics 
which is not related to an essence of cause-
and-effect relations when health is described 
should we refer to events in a conditionally 
homogenous stratum included into a heteroge-
neous cohort. A descriptive approach involves 
obvious formalism: in cases when a simple 
Markov scheme can be used to describe a flow 
of events with specific causes of deaths or dis-
eases in a homogenous group, and this Markov 
scheme has three states and two competing 

reasons for a person to be dropped out from 
observation, a speed of change in a number of 
people in a compartment responsible for the 
initial state is proportionate to a number of 
people in it (Figure 1, Formula (1)). Regard-
less of how such a model is close to reality, a 
coefficient of proportionality between a speed 
of dropping out and a number of people in a 
basic state can also be calculated and given as 
a sum of two intensities of events, under study 
and competing. 

This scheme given in Figure 1 can be 
roughly described with a system of common 
differential equations 

              
    

 

0 1

1
1

,

,

dN h t h t N
dt
dM h t N
dt

   

 
      (1, 2) 

where t is time (age);    0 1,h t h t  are intensi-
ties of events related to the examined and 
competing causes of death;  N t  is a number 
of people in the initial state;  1M t is cumula-
tive (accumulated) number of deaths due to the 
examined cause. Equations (1, 2) are only ap-
proximate due to inability to calculate any de-
rivatives from discrete-valued functions that 
are also susceptible to random fluctuations. 
However, it doesn’t prevent us from moving to 
expected conditional fractions calculated from 
an initial number of people in a homogenous 
sub-group at a certain initial observation point 

0t , and hence to conditional probabilities or 
prevalence in a stratum. In this case our ratios 
can become continuous and precise (3, 4): 

    

 

0 1

1

,

,

dS h t h t S
dt
dR h t S
dt

   

 
        (3, 4) 

if we conditionally take  0 1S t   at a point 
where observation starts. Due to its linearity the 
system (3, 4) has a simple analytical solution: 

         0 0 0 0 1 0 ,S t S t t S t P t t P t t      (5) 
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     
0

0 1 τ τ τ ,
t

t

R t t h S d           (6) 

where     0 0 0 0expP t t H t t  ;  1 0P t t   

  1 0exp H t t  ;    
0

0 τ τ
t

t

H t t h d  ; R  is 

a growth in a risk of death due to the examined 
cause over a period  0,t t . As it logically 
comes from solutions to (5, 6) and according 
to experience gained by a wide circles of epi-
demiologists [13–23] these expressions pro-
vide an opportunity not only to know intensity 
of examined specific events  1h t  but also an 

exact survival function  0S t t , additional 
conditional lifetime risk of death due to the 
examined cause  0R t t , cumulative prob-
ability that a person will not die to the exam-
ined cause provided that he or she reaches an 
age 0t  and conditional absence of any compet-

ing causes of death ‒  1 0P t t , as well as an 
analogue of Nelson – Aalen estimator 

 1 0H t t  which is also known as cumulative 
intensity of specific mortality provided there 
are no other causes of death (cumulative haz-
ard) [19, 20]. It may seem that interrelated 
values  1 0P t t  и  1 0H t t  are non-observable; 
however, it is not true. Epidemiologic applica-
tions of martingales theory [19] stipulate that a 
conditional but still quite measurable Kaplan – 
Meier survival function [22] corresponds to 
the value  1 0P t t ; and measurable and already 
mentioned martingale Nelson – Aalen estima-
tor corresponds to the value  1 0H t t . Recall 

that the value  1 0H t t  which in its essence is 
an area below the curve showing the process 
 1h t  has been successfully and efficiently 

controlled for more than 2 decades within on-
cologic monitoring [4] in the Russian Federa-
tion. This parameter is convenient not only for 
measurements within a cohort, but also within 
a population. 

Therefore, 6 descriptive epidemiologic 
parameters, 4 cumulative and 2 intensive, turn 
out to be related within a simple dynamic 
scheme shown in Figure 1. It should be noted 
that values of relative parameters are bound to 
different bases. For example, a conditional 
lifetime risk is calculated against a point where 
observation starts; but intensive parameters and 
their cumulative attributes  1 0P t t  and  1 0H t t  
are sliding, that is, they are calculated against an 
achieved share of survived people since they 
are related to a condition that a person reaches 
a moment of observation. Besides, a true sur-
vival function turns out to be stronger related 
to competing causes of death and uncontrolla-
ble history of a stratum prior to a moment 
when observation starts in comparison with 
parameters that are responsible for the exam-
ined cause of death. Due to it the parameters 

 1 0H t t  and  1 0P t t  are interesting as such. 

Given the relation     1 0 1 0expP t t H t t   

the parameter  1 0P t t  can be viewed as a cer-
tain conditional analogue of a “survival func-
tion”; its peculiarity is that its limit value can 
fail to reach zero at t  as opposed to a 
true survival function. This situation is quite 
possible in case the examined cause of death is 
not a leading one as opposed to a set of com-
peting causes of death. It will also occur in 
such cases when fatal potential of the exam-
ined cause of death is finite due to a share of 
people who are potentially prone to the exam-
ined diseases being also finite. These proper-
ties allow interpreting the parameters 

  1 01 exp H t t   and  1 0H t t  in a way 
similar to a specific risk value and almost 
equate them numerically but only if the limit 
value of Nelson – Aalen estimator doesn’t ex-
ceed approximately ~ 0.1. Population cumula-
tive mortality related to a specific localization 
of an oncologic disease practically always 
meets this condition [4]. However, for exam-
ple, mortality due to all diseases of the circula-
tory system in a population usually overlaps 
this limitation and in that case  01 ttH  is not 
a risk assessment.  01 ttH  can also reach 
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relatively high values among people treated in 
specialized clinics or departments since they 
are specifically admitted there for treatment. 
For example, the work [24] contains assessments 
obtained for a group risk of death caused by 
prostate cancer being up to  11 P 24 % and it 
corresponds to the limit value 1H 0.27 over a 
period of time exceeding 3,000 days. For 
comparison, cumulative risk of prostate cancer 
among men in Russia doesn’t exceed 5.7 % 
over 75 years of life [4]. Risk rate 

  01exp1 ttH  is usually abbreviated as 
RADS in radiation epidemiology [15, 16]. 

Construction principles and model 
parameterization. Bayesian interval statistic 
estimates. As was shown, estimation of cumu-
lative rates for specific countries doesn’t in-
volve considerable technical difficulties; how-
ever, any detailed stratification of observations 
within factor space results in a decrease in a 
number of “cases” in each stratum and, ac-
cordingly, to a risk assessment becoming more 
and more uncertain. The only way to make as-
sessment more exact and simultaneously pre-
serve detailed description is to apply a unified 
approximating mathematical model for all 
strata simultaneously. Thus all the observed 
“cases” are included into calculations and it, 
provided there is relevant optimization, will 
allow achieving more steady risk assessments. 
It is exactly the role that should be played by a 
unified model for all strata. It should be dy-
namic, that is, suitable for all observations dis-
tributed as per time (age). Strictly speaking, 
this model should correspond to an essence of 
correlations between factors and risk rates; 
however, usually it is a research object by it-
self, that is, there is usually no such model un-
til analysis is completed. In this case we can 
rely on expected similarity in dynamics of risk 
realization over time for different strata 

 Datathh ,, βz  basing on already exam-
ined trends for parameters in a certain refer-
ence group. Here z is a risk factors vector;  
β  is a relevant vector of adjustable model pa-
rameters. When examining oncologic effects, 
it seems advisable to use population parame-
ters [4] and, basing on perturbation technique, 

to introduce a relation with risk factors and 
relevant parameterization into the description. 
For example, we can use the fact that most in-
tensive parameters showing a risk of death due 
to analogue oncologic diseases are unimodal 
functions if they are taken in time dynamics; 
these functions are characterized with ap-
proximately power-law growth within a range 
of ages being 60–65 years with a drastic fall at 
an age exceeding 75 years. 

If a continuous model  Datath ,, βz  to 
a certain extent is adequate to examined multi-
plicity of discrete empirical Data  countings, 
it is an attempt to dually describe the same 
events either directly via countings or within a 
space of parameters β . Certain continuous 
conditional distribution of parameters over 
space will correspond to natural dispersion of 
observations over space. It will be interesting 
for interval estimation of multiple suitable pa-
rametric hypotheses if estimation procedures 
are given a probabilistic form. 

Bayes’ theorem is a suitable instrument 
for it since it allows linking these two above-
mentioned types of conditional distributions:  

     
   

     

ψ

или ψ .

L Data prior
Data

L Data prior d

Data L Data prior






 


β β

β
β β β

β β β

 (7, 8)  

Although Bayesian approach is consid-
ered to be a direct statistical competitor for a 
well-known maximum likelihood procedure, 
both approaches are organically related to each 
other. Here  βDataL  is density of observa-
tions distribution for a fixed parametric model; 
 ψ Dataβ  is density of model parameters dis-

tribution for collected observations;  prior β  
is a priori distribution of parameters in a pre-
sumably relevant “hazard” model. In a sense 
of conditional distributions ψ  is Bayes’ likeli-
hood; L is Fischer’s likelihood, and an ex-
pected area of the most probable parameters 
lies close to a maximum likelihood point in the 
function L, at least in such studies where a re-
sult is unknown until experimental data have 
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been analyzed. The relations (7, 8) would be 
quite strict if the a priori distribution 

 βprior  were known; due to this an opinion 
is valid5 that the concept of parametrically de-
pendent likelihood is not identical to the con-
cept of conditional probability density [25]. 
However, let us speak for Bayesian approach 
via mentioning that each new study, and espe-
cially a single one, is characterized with al-
most complete absence of pre-experimental 
knowledge due to which the function 

 βprior  certainly has a significantly greater 
width than с  βDataL  as a function of pa-
rameters β  in a certain significant area. There-
fore it will not be a mistake to assume there is 
certain non-informative a priori distribution or 
even   1βprior  in a significant area. Then 
formally    ψ Data L Dataβ β  and it is 
exactly what Ronald Fischer used and it still 
didn’t prevent him from rejecting Bayesian 
approach completely in his publications [25]. 
This similarity of concepts developed within 
Bayesian and Fischer’s likelihoods justifies 
considering constant parameters of likelihood 
function  L Data β  as adjustable model vari-
ables. What is considered a constant vector in 
frequentist concepts by Fischer and Pearson 
turns out to be a continuous random variable as 
per Laplas / Bayes under stricter consideration. 

Let us point out the main thing here: like-
lihood for a set of strata due to their independ-
ence is simply equal to a product obtained via 
multiplying likelihoods for each homogenous 
stratum. Therefore, let us build likelihood for a 
separate homogenous stratum. To do that, we 
introduce our grid of time moments ti within 
its limits and each node in this grid is bound to 
a specific event on a numerical axis showing 
age. The point t0 corresponds to a beginning of 
observations. It is rather rare, that 2 or 3 such 
events occur in the same node simultaneously, 
therefore each semi-open interval ],( 1 ii tt   be-
tween two neighboring nodes is related to its 
own quantity of accumulated specific cases 

im . Usually 1im . Overall number of accu-

mulated cases amounts to 



i

j
ji mM

1  
by the 

examined moment of  ti. 
Combined likelihood of observations over 

the whole sequence of specific events in the j-
th stratum with a factor vector jz  as a chain of 
sequential transitions is 

 
 

max max 1 1

max

1
1

( , , ... , , )

1

j i i j

i

i i
i

L L M M M

p M M






 

 

z β
,   (9) 

where 
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





 


.   (10)  

Here we also introduce  π expi iH   

and ),,( 1 βz iii ttHH  where increases in 
cumulative risk intensity are integrals of model 
intensity function 

   
1

1, , τ , τ
i

i

t

i i i i
t

H H t t h d


  z β z β .   (11) 

The likelihood (9, 10) is differential in its 
structure just as Fischer’s conventional likeli-
hood for independent events; however, it is not 
quite true. If we analyze partial likelihoods 

  iii m
i

mN
iiL   1~ 1 , we can easily note that 

they reach their maximum value at 
  11   iii

opt
i NmN , that is, they satisfy to 

Kaplan – Meier procedure locally [22] at each 
i-th time step for a homogenous stratum. 
Therefore, using functional (9, 10) to its 
maximum can potentially result in interpola-
tion of a cumulative parameter if we consider 
estimates opt

ii  ˆ  to be interpolating model 
parameters. Naturally, the same property holds 
approximately in case there are fewer parame-
ters within a considered vector  but with 
added filtrating property of likelihood as esti-
mating functional. Therefore, this constructed 

__________________________ 
 
5 Reference book on applied statistics.  In:  E. Lloyd, U. Lederman, eds. Moscow, Finance and statistics Publ., 1989, 510 p. 
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likelihood can simultaneously provide both 
differential and cumulative approximation (re-
gression). Intensive rates are estimated ana-
logically to numerical differentiation of a 
changing noisy function. Empirical data dif-
ferentiation is a poorly grounded (incorrect) 
numerical operation. On the contrary, deriva-
tives from a smoothed cumulative function are 
going to be more stable. 

It is technically more convenient not to 
use drastically changing likelihood function 
 L Data β  or density function  ψ Dataβ  

but to operate with their doubled natural loga-
rithm that is shifted against the ultimate satura-
tion point (interpolation). Then, instead of 
searches near to a maximum in the expression 
(9) for one stratum, we should analyze the 
function  

 

   

  

1
1

1

1

ln

2

ln
1

i i
i i

i i

i i
i

i i

Data

N mN m
N

mm
N






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



 

  
      

           



β

β

β

  (12)  

close to its minimum. Contributions (12) are to 
be summed for the whole set of strata that are 
not empty. Ultimately in this case we can 
speak about achieved deviation (estimation 
functional)  

   j
j

Data  β β ; 

    0 Dataj β .  (13)  

According to well-known concepts [26, 27] 
that are typical for Fischer’s approach, a value 
at which  β  deviates from zero gives 
grounds for making judgments on quality and 
statistical significance of completed approxi-
mation; and models are to be selected basing 
on difference in achieved optimal values. If 
parametric deviation (13) is close to a quad-
ratic one as per small offset from the center 
(that is,  ψ Dataβ  is almost normal multi-
dimensional distribution), then random scatter-

ing of  β  near to the minimum is close to 
“chi-square” distribution with a number of de-
grees of freedom equal to difference between a 
number of grouped summands in (13) and a 
number of dimensions in the vector . 

Bearing in mind that in practice paramet-
ric dependence of  L Data β  and 

 ψ Dataβ  likelihoods can turn out to be far 
from multidimensional normal distribution, it 
seems advisable to complete an estimation al-
gorithm as per a logic following the sequential 
continuation within Bayesian approach. It 
means transition to interval estimates based on 
multidimensional joint distributions (7, 8). 
However, together with sufficient strictness, 
Bayesian approach is highly labor-consuming 
and prone to accumulating computational er-
rors related to direct calculation of multidi-
mensional integrals with participating prob-
ability density  ψ Dataβ  within the space of 
parameters . Given that, in practice it seems 
more realistic to apply multiple probability 
simulation (Monte–Carlo method) since it al-
lows us to average functions or parameters that 
are being considered, together with assessing 
their marginal statistic properties, as per a 
great number of point pseudo-observations  
(~1 million or more) that comply with the dis-
tribution  ψ Dataβ . This algorithm is also 
labor-consuming, but still, the most realistic 
one. It is implemented in practice via several 
ways and one of them, Gibbs’ algorithm, is 
based on well-known theoretical grounds [28]. 
Herewith estimates of a distribution center as 
per maximum likelihood method in case den-
sity  ψ Dataβ  is unimodal can be relevant 
initial approximation for building up a stochas-
tic sequence of pseudo-observations. 

Results obtained via assessing risk rates 
in a heterogeneous cohort with previously 
known properties. Let us consider an artifi-
cially created epidemiologic register that de-
scribes a certain “etalon” cohort with events 
not being random in it and complying with a 
previously known model. Choice on imitation 
data instead of actual ones is preferable in this 
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case since there is no actual register with risk 
research results obtained for it certainly coin-
ciding with exact and previously known rates. 
Since only determinate imitation of stochastic 
behavior by participants may occur in an arti-
ficial cohort, we should expect that zero or al-
most zero deviation (13) would probably be 
reached numerically. In other words, we are to 
give a practical answer to a question whether 
the examined estimation algorithm has asymp-
totic convergence. This question concerns not 
only the examined algorithm but also its proto-
type, AMFIT algorithm within Epicure soft-
ware package, although it has never been 
checked before. 

Let us consider a radiation-epidemiologic 
study with the following underlying character-
istics as an example. We construct an imitation 
sampling made up of distinctly limited ho-
mogenous strata that differ as per a gamma-
irradiation dose (from 0 to 2 Sv), sex, and age. 
We consider a cumulative radiation dose to be 
a risk factor and this dose is a result of single 
acute even irradiation of the lungs that oc-
curred at an age of 19. Our basic reasons for 
changes in oncologic mortality are a) condi-
tionally linear growth in such cumulative rate 
as intensity of a risk of death caused by lung 
cancer with a growth in a dose that is known 
and limited as per its value; b) a certain de-
crease in life expectancy for all irradiated 
members in the cohort; c) sex as a heterogene-
ity factor that results in both background risk 
parameters being different for men and women 
and differences in sensitivity to radiation. Such 
cause-and-effect relations are well known due 
to a series of studies on an actual cohort made 
of people who survived atomic bombing in 
Hiroshima and Nagasaki [29, 30]. Figure 2 
shows a fragment of a diagram (men) with 
rough estimates of annual risks as per a typical 
scheme for a three-factor “etalon cohort” (sex, 
dose, and age). Overall there were 25,000 in-
dividual entries in the database (15,000 men 
and 10,000 women). Overall number of death 
cases caused by specific cancer providing the 
cohort totally died out amounted to 1,118 
(995 cases among men and 123 cases among 
women). Overall period of observation over 

the cohort amounted to 1,031,414 person-
years. If we group the participants as per 
14 age intervals, 2 sexes, and 5 dose levels, we 
obtain 14·2·5 = 140 homogenous strata. Only 
91 out of them turned out to contain non-zero 
number of specific cancer cases. Non-empty 
strata corresponded to 754,106 person-years of 
observation. 

It seems obvious that in case there are no 
random fluctuations in sampling parameters in 
this “etalon cohort”, dose- and age-trends in 
Figure 2 are to be visible to the naked eye. Si-
multaneously quantitative regularities for 
background risk rates fully correspond to 
population ones [4]. An expert who studies 
risks should “see” all the preset detailing. So 
what results can be yielded due to the sug-
gested algorithm and its closest prototype? 

The suggested procedure for estimating 
changes in cumulative and intensive rates turns 
out to be quite efficient for solving the task; 
we can see it in Figures 3 and 4, both for 
women sub-cohort and men sub-cohort within 
the unified parametric model 8( )Rβ . 

Calculated minimum deviation min  for 
the computed extreme solution amounted to 
only 0.40 units in this case given a significant 
increase in component “observations” as per 
Kaplan – Meier and a growth in a number of 
degrees of freedom in comparison with tradi-
tional preliminary grouping with applying  
5-year age intervals (Figure 2). It, if recalculated 

 

 
Figure 2. Three-dimensional diagram “age-dose-

rate” for men in the “etalon cohort”. Horizontal axes 
show age strata (14) and dose strata (5). Vertical 
axis shows rough estimates of specific mortality 

rate within a stratum (‰ per year) 
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Figure 3. Dynamic dependences for specific 

mortality rates among men in “etalon cohort” 
preset and estimated as per binomial regression 

algorithm  

 
Figure 4. Dynamic dependences for specific 

mortality rates among women in “etalon cohort” 
preset and estimated as per binomial regression 

algorithm 

per 1 case out of 1,118, approximately corre-
sponds to visually observable standard mean-
root square deviation in estimated “hazard” rates 
being about %9.1019.0111840.0  . Re-
sidual deviation min  didn’t reach exact zero 
and it indicates that it is impossible to overcome 
discrete nature of entries in the sampling data-
base in comparison with continuous nature of 
parameters in an actual general population. 
However it is hardly possible to further reduce 
this deviation. Coefficients for a dose trend in 
cumulative value of the accumulation intensity 
of the excess lifetime risk and its uncertainty as-
sessed as per Fischer’s information matrix 

 
Figure 5. Results obtained via AMFIT-estimates of 
does and age trends in specific risk compared to its 
actual behavior for men sub-cohort. Obviously, a 
typical model [9, 10, 31–33] showing background 

and examined risks behavior is a source of 
systemic deviations in all estimates 

amounted to  10.49 95% CI : 0.24 ... 0.99Gy  
for men and  10.68 G 95% CI : 0.33 ...1.35y  
for women. We should pay attention to signifi-
cant uncertainty that still occurs although 
achieved deviation is extremely low. It occurs 
due to dimensions of uncertainty area being ex-
tremely dependent on function (13) curving 
close to the extremum and not on its reached 
minimum value since confidence intervals are 
estimated in such ways so that countings in the 
“etalon cohort” were still prone to random fluc-
tuations to the same extent as if they were real 
ones. It is the basic difference between binomial 
regression and regression as per least-squares 
procedures. 

Unlike the obtained results, AMFIT pro-
cedure, when applied within its typical group 
of models [9, 10, 31–33], showed significant 
systemic deviation in annual risks in older 
ages areas (Figure 5, men sub-cohort). Only 
ascending parts in the curves can be approxi-
mated properly. Also models within this algo-
rithm turned out to fail “to see” probable inter-
sections between group of “hazard” curves re-
lated to a certain decrease in life expectancy of 
irradiated people. 

Observed minimum deviation (the for-
mula 13) amounted to 24.3 units for computed 
extreme solution with a number of degrees of 
freedom being 85 (a number of strata minus a 
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number of parameters). Given this number of 
degrees of freedom, 90 % -interval of expected 
random minimum deviation occurrence that is 
seemingly [26] distributed as per “chi-square 
law” should amount to 64.7 … 107.5. There-
fore, the observed value 24.3 is less statisti-
cally significant than a typical random value. 
This observable overfitting practically assur-
edly indicates that this “etalon cohort” is an 
artificial one. However, it is rather surprising 
that min  deviated from zero significantly; it 
is obviously due to absurd systemic bias of 
 β,, sexDth  in an area with ages exceeding 

75 years and even 100 years for all dose expo-
sures. Actually reached significance p ~ 10-11 
formally indicates there is extremely low 
probability that a model will deviate from data, 
but it corresponds to an actual situation only in 
an area where risk intensity grows rapidly 
(Figure 5) but not in a wide range of ages. 
Since all curves showing annual risks have 
been biased, the same has happened to dose 
trends. For example, annual parameter 
 β,, sexDth  for men aged 60 years moved 

at a rate of changes in a dose being 
82 % per 1Sv , and it is almost 3 times 

higher than a dose trend parameter for cumula-
tive lifetime value determined via the previ-
ously examined algorithm under the same 
conditions. Discrepancy between these two 
types of relative trends and, consequently, the 
necessity to distinguish between them has also 
been mentioned by other authors [34]. There-
fore, AMFIT can be prone to overestimating 
effects produced by irradiation. In some cases 
use of annual parameters may also result in 
actual (cumulative) risks being underesti-
mated [31]. Potential basis for such errors is 
obvious in Figures 3 and 4. 

Algorithm for assessing risks in a het-
erogeneous cohort: discussing advantages 
and drawbacks. Let us mention the basic as-
pects in which our algorithm for risk measur-
ing differs from its analogues and primarily 
from its prototype, AMFIT algorithm. First of 
all, countings of all examined specific events 
are considered to be binomial processes in the 
suggested algorithm, and cumulative and in-

tensive rates are determined on probabilistic 
basis and not as heuristic values. It allows us-
ing risk assessment as a procedure for indirect 
measurements of continuously-distributed pa-
rameter estimates basing on Bayesian ap-
proach. As opposed to that, both AMFIT algo-
rithm, and some other algorithms that are not 
so frequently applied [35–38] are based on point 
estimate of the whole set of events and smooth 
approximation of obtained non-smooth empiric 
distributions within Pearson and Fischer’s fre-
quency-discrete statistic paradigm. 

These mentioned alternative approaches 
to risk assessment have obvious but frequently 
neglected drawbacks together with mathemati-
cal simplicity in comparison with process as-
sessment. For example, an actual intensive risk 
is not either constant or a set of constants as it 
would be stated within Poisson’s statistics. 
Owing to it, a role played by inaccuracy re-
lated to stratification of a heterogeneous cohort 
as per age is not clear. Too small age intervals 
can results in cases disappearing in them for 
cohorts that are small in volume and Poisson’s 
regression functional can lose its extreme 
properties in that case. Too large intervals, on 
the contrary, will result in groundless averag-
ing of risk accumulation intensities within an 
interval. It is difficult to set an optimal width 
for intervals in advance when performing 
stratification as per age. A similar drawback of 
Poisson’s regression becomes obvious as a co-
hort dies out and a number of specific cases 
tends to zero. What boundary in age distribu-
tion should we stop at? Binomial law for event 
distribution would be more relevant here since 
Poisson’s law arises from it asymptotically as 
a partial statistical model for rare events. 

We should also note that a quality of ap-
proximation  β,, sexDth  for describing ex-
posure to radiation depends on how well this 
function operates in case there is no external 
influence ( 0D ). Here we speak about this 
exact reference group which is an integral 
component in any comparative study. This nu-
ance is often neglected by researchers [32, 33] 
since they rely on simple models for power-
level growth or models with saturation. For-
mally it means that background life-long cu-
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mulative intensity can reach very high values 
or approach infinity and a specific risk of 
death due to the examined cause reaches 1. 
However, there are no such diseases in reality 
as it can obviously be seen already at a stage 
when data are being grouped preliminarily 
(Figure 2). Such data have already been suc-
cessfully taken into account in models show-
ing intensive risk parameters in dynamics 
within Bayesian studies on limited samplings 
with an incomplete period of observation and 
data losses, for example as per such proce-
dures as “right censored spell models” [39], 
“cure rate models” [40], “bounded cumulative 
hazard models” [41]. Moreover, we can justly 
assume that a shift in estimates in Figure 5 is 
predominantly related to improper background 
risk model and not only to the nature of the 
process being neglected and a statistic law be-
ing selected incorrectly. We should also note 
that such a parameter as p-value that is deter-
mined via testing likelihoods is not always a 
reliable reference point when approximation 
quality is assessed in a multidimensional case. 

All the above mentioned doesn’t mean 
that the newly suggested procedure for risk 
assessment is an ideal researcher’s tool. Recall 
that it is based on such cohort stratification 
that doesn’t provide for cohort members going 
from one stratum into another during an ob-
servation period. Should such transition ap-
pear, strata can’t be considered independent 
and it means that functional of probabilistic 
estimation should be built on other grounds. 
Another vulnerability is that factor space is not 
completely covered with available observa-
tions; this vulnerability is typical for any em-
piric sampling. CONSORT standards [42] 
cover any sampling studies. Even if there is a 
strong correlation in one pair of factors, effects 
produced by one of them can be disguised by 
seeming effects produced by another. Due to 
that, if we want to assess processes success-
fully, we should either work with sufficiently 
large and diverse samplings, or we should ex-
amine correlations between risks and factors 
via a controlled experiment. 

It is important to note that this paper 
doesn’t promote any theory in the sphere of 

analytical epidemiology. We merely suggest 
one instrument for practical analysis within a 
“dose – time – risk” mental scheme instead of 
a conventional limited approach “dose – risk” 
since the latter imposes interpreting harm 
caused by external influences only as simple 
one-dimension dependence in a plain two-axis 
graph. Indeed, a simplifying “dose – risk” 
concept can create artifacts in a form of false 
trends that are hard to explain. Interpretation 
of a radiation-oncologic trend which we took 
form the document [43] is a good example. 

 
Figure 6. Schematic behavior of excessive risk 

depending on a radiation exposure dose as 
expected by BEIR VII experts. Taken from the 

report [43] 

This graph obviously shows a non-linear 
response in excessive intensity of specific 
events with a clear non-monotonous drop in an 
area of large doses. This trend can’t be plausi-
bly explained either within a well-known liner 
non-threshold model or within well-grounded 
linear models. However, it should be noted 
that if “intensity” is used instead of “risk”, this 
graph can be linked to only one age group in 
the cohort. In this case it is easy to reveal that 
a dose trend shown in Figures 3 and 4 looks 
exactly like this within age range from 60 to 
65 years with a typical drop and even a change 
in a sign of “excessive” effects in older age 
groups. And here cumulative risk grows only 
monotonously with a growth in a cumulative 
dose. Here we should also remember that a 
well-known linear-non-threshold “dose – ef-
fect” model by N.V. Timofeev-Ressovskiy and 
K.G. Zimmer [44, 45] was developed exactly 



Group health risk parameters in a heterogeneous cohort. Indirect assessment…     

ISSN (Print) 2308-1155    ISSN (Online) 2308-1163    ISSN (Eng-online) 2542-2308 31

for a pair of cumulative values, an analogue of 
the Nelson – Aalen estimator being one of 
them long before this estimator was invented. 
An author who developed a well-known “ef-
fective dose” concept [46] had similar opin-
ions about a sphere where cumulative parame-
ters could be successfully applied. 

Conclusion. Therefore, it seems quite 
promising to analyze dynamics of specific 
events occurrence in a heterogeneous cohort 
combined with Bayesian methodology for risk 
assessment provided that researchers have de-
tailed information about cohort members col-
lected during a sufficiently long period of time 
or even in a life-long observation and complete 
and comprehensive description of individual 
risk factors. Applied computation technique is 
within conventional epidemiologic procedures 
for health risk assessment since it combines ap-
plication of annual group risk rates together 
with cumulative ones. It has been shown that 

when experts try to predict damage caused by 
external influence on people’s health within 
conventional “dose – effect” mental schemes, 
they should preferably rely on a combination of 
cumulative doses and cumulative risks or their 
descriptive analogues (effects). 

But at the same time we can’t fail to men-
tion that using the described parametric ver-
sion of Bayesian procedures is rather labor-
consuming. This drawback can be partially 
overcome only via creating relevant software6 
that is able to provide automatic tools for 
grouping data, selecting models, searching for 
extreme solutions, and modeling statistic un-
certainty of Bayesian estimates. 
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