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In autumn and winter 2020–2021 there was a growth in morbidity with COVID-19. Since there are no efficient medica-

tions and mass vaccination has only just begun, quarantine, limitations on travels and contacts between people as well as 
use of personal protection equipment (masks) still remain priority measures aimed at preventing the disease from spreading.  

In this work we have analyzed how the epidemic developed and what impacts quarantine measures exerted on the dis-
ease spread; to do that we applied various mathematical models. It was shown that simple models belonging to SIR-type (S 
means susceptible; I, infected; and R, recovered or removed from the infected group) allowed estimating certain model pa-
rameters such as morbidity and recovery coefficients that could be used in more complicated models. 

We examined spatio-temporal epidemiologic models based on finding solutions to non-stationary two-dimensional re-
action-diffusion equations. Such models allow taking into account uneven distribution of population, changes in population 
mobility, and changes in frequency of contacts between susceptible and infected people due to quarantine. We applied ob-
tained analytical and numerical solutions to analyze different stages in the epidemic as well as its wave-like development 
influenced by imposing and canceling quarantine limitations. 

To take into account ultimate rate at which the disease spreads and its incubation period (when an infected person is 
not a source of contagion), we suggest using equations similar to the Cattaneo-Vernotte one. The suggested model allows 
predicting where the front of morbidity spread is going to occur, that is, a moving frontier between areas where there are 
infected people and areas where they are absent. Use of such models provides an opportunity to introduce differential quar-
antine measures basing on more objective grounds.  

At the end of 2020 mass vaccination started in some countries. We estimated a necessary number of people that had to 
be vaccinated so that new waves of COVID-19 epidemic would be prevented; in our estimates, not less than 80 % of the 
country population should be vaccinated. 

Correct prediction of epidemic development is becoming more and more vital at the moment due to new and more con-
tagious COVID-19 virus strains occurring in England, South Africa, and some other countries. 

Our research results can be used for predicting spread of COVID-19 and other communicable diseases; they can make 
for taking the most efficient measures for successful control over epidemics.  

Key words: spatio-temporal modeling, epidemic, COVID-19, morbidity, non-stationary two-dimensional reaction-
diffusion equations, quarantine, contagion rate, recovery rate.  
 

 
 Researchers predict that morbidity with 

COVID-19 will grow in winter 2020–2021 [1]. 
In autumn 2020 there is an intense growth in 
number of people infected with COVID-19 
all over the world and it is the second pan-
demic wave. Lockdown is again introduced in 
some European countries and RF regions as 
well. In Israel there was a repeated rapid 

growth in morbidity in late August and Sep-
tember, and it was only strict lockdown intro-
duced at the end of September and was valid 
for the whole October that allowed reducing 
quantity of everyday contagion cases and se-
riously ill patients as well as patients who 
needed to be switched to artificial lung venti-
lation devices. 

__________________________ 
 
 Sokolovsky V.L., Furman G.B., Polyanskaya D.A., Furman E.G., 2021 
Vladimir L. Sokolovsky – Candidate of Sciences, Professor at the Physics Department (e-mail: sokolovv@bgu.ac.il; 

tel.: +9 (725) 464-703-40; ORCID: https://orcid.org/0000-0003-4887-413X).   
Grigoriy B. Furman – Candidate of Sciences, Professor at the Physics Department (e-mail: gregoryf@bgu.ac.il; 

tel.: +9 (725) 476-842-45; ORCID: https://orcid.org/0000-0001-7303-9414).  
Darya A. Polyanskaya – Candidate of Medical Sciences, Lecturer at the Hygiene Department of the Medical and Pre-

vention Faculty (e-mail: daryasp88@gmail.com; tel.: +7 (909) 731-11-37; ORCID: https://orcid.org/0000-0002-1466-7039).  
Evgeniy G. Furman – Corresponding member of the RAS, Doctor of Medical Sciences, Professor, Head of the Depart-

ment for Faculty and Hospital Pediatrics (e-mail: furman1@yandex.ru; tel.: +7 (912) 883-97-35; ORCID: 
https://orcid.org/0000-0002-1751-5532).  



V.L. Sokolovsky, G.B. Furman, D.A. Polyanskaya, E.G. Furman 

Health Risk Analysis. 2021. no. 1 24 

Since there are no efficient medications 
and vaccines against COVID-19, basic means 
that can prevent the disease spread are still 
lockdowns, limitations on travelling and con-
tacts between people, as well as personal pro-
tection means such as facial masks. On one 
hand, lockdown introduction leads to a de-
crease in number of sick people and burden on 
a public healthcare system. On the other hand, 
lockdown results in a fall in economic activi-
ties, especially regarding trade, tourism, cul-
ture, and entertainment; it also results in dete-
riorating quality of education and does certain 
damage to mental state of population. Lock-
down should be introduced basing on analyz-
ing how a disease spreads and mathematical 
models that take into account specific peculi-
arities of a given disease and are able to pre-
dict its spread. Developed procedures for 
mathematical modeling are significant not 
only for predicting COVID-19 spread and 
making for the most efficient measures being 
taken but also for successful fighting against 
future epidemics. 

Various mathematical models showing 
epidemic development were developed and ap-
plied when analyzing variable diseases spread 
(typhus, cholera, Ebola, etc.) [2–7]. These mod-
els, as well as some new ones that took into ac-
count COVID-19 peculiarities, were used for 
simulating COVID-19 epidemic [8–15]. Start-
ing from the very beginning of COVID-19 epi-
demic, more than 11 thousand articles have 
been published in scientific journals and on 
specialized web-sites, as well as in medRxiv, 
bioRxiv and arXiv archives; these works focus 
on various aspects of the disease including sta-
tistics and analysis of its spread. Most models 
are based on the SIR (S – susceptible, I – in-
fected, R – removed from infected or recov-
ered) epidemic model and its modifications. 

These models are based on an assumption 
that susceptible, infected, and recovered peo-
ple are spatially distributed evenly. But in ac-
tual conditions these population groups are 
distributed extremely unevenly even in small 
countries and megacities. There are also sev-
eral models that take into account uneven spa-
tial distribution of susceptible and infected 
people [2, 4, 7]. Reaction-diffusion epidemi-

ologic models belong to such models with a dis-
ease spread being given in them with a system of 
heat conductivity equations with chemical reac-
tion. However, these models do not take into 
account natural daily people migration (home, 
work, educational establishments, cultural insti-
tutions, etc.). Another drawback is an assump-
tion that virus is caught from infected people 
instantly and it simultaneously moves people 
from susceptible into infected ones and as a re-
sult a disease spreads with infinite rate. 

Our research goal is to analyze spread of 
COVID-19 epidemic using various epidemi-
ologic mathematical models. Spatio-temporal 
epidemic modeling is based on analytical and 
numerical solutions to non-stationary two-
dimensional reaction-diffusion equations as 
well as these equations that model a time lag 
in a disease occurrence. 

Data and methods. In the 1st section of 
Results and discussion, we used the SIR model 
and statistical data to determine morbidity and 
recovery coefficients; then, introducing de-
pendences of these coefficients on time, we 
modeled a wave-like epidemic caused by 
lockdown being introduced and canceled. In 
the next section we showed that morbidity and 
recovery coefficients determined with the SIR 
model could be used in reaction-diffusion epi-
demiologic models; we also analyzed two-
dimensional spread of the disease. In the 3rd 

section we modernized reaction-diffusion epi-
demiologic models and it allowed us to model 
spatio-temporal epidemic development taking 
into account daily population migration. In the 
4th section we introduced a reaction-diffusion 
epidemiologic model with finite contagion 
time. The suggested model predicts that a front 
of the disease spread will occur, that is, a mov-
ing frontier between areas where there are in-
fected people and areas where they are absent. 

Results and discussion. 1. SIR epidemic 
model. In this section we consider the simplest 
SIR model that allows assessing COVID-19 
epidemic dynamics in the 1st approximation 
and is a basis for developing more precise 
models. Within the SIR epidemic model popu-
lation is divided into groups that do not over-
lap and number of people in them changes 
over time [2–4, 6, 9]. A «susceptible» group 
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includes people who are prone to infection but 
who are not sick yet. The number of suscepti-
ble group S (t) goes down due to people mov-
ing to an «infected» group: number of infected 
people I (t) goes down due to people making 
full recovery or dying (R (t)). Recovered peo-
ple are assumed to have immunity; transfer 
from one group to another does not depend on 
age, sex, social status, etc. 

Basic assumptions that underlie use of 
this model are the following: 

– each person from the susceptible group 
contacts infected ones and there is a certain 
probability that he or she will also get infected, 
that probability does not depend on time; 

– infection rate is proportionate to a num-
ber of infected people as well as quantity of 
susceptible people; 

– each infected person, in his or her turn, is 
constantly likely to recover at a certain time unit; 

– recovery rate is proportionate to a num-
ber of infected people; 

– a recovered person has immunity and is 
not susceptible to repeated infection. 

SIR model equations can be given as: 

 1αds si
dt

    (1) 

    1 2α αdi si i
dt

    (2) 

 2αdr i
dt

   (3) 

where ( ) ( ) /s t S t N ,   ( ) /i t I t N , 

  ( ) / ,r t R t N  1α  and 2α  are the morbidity 
and recovery coefficients respectively. These 
coefficients usually have dimension 1/day (1/d). 
Here it is assumed that population number 

 ( ) ( ) ( )S t I t R t N     (4) 
is constant. 

Numeric solution to the equations (1)–(3) 
at 1α 0.4  1/d, 2α 0.1  1/d and initial condi-
tions  0 1s  ,   6

0 0 10i i    and  0 0r   is 
given in Figure 1. 

  60 10i   for such countries as Israel, 
Greece, Sweden, as well as for megacities 
(Moscow, Saint-Petersburg) means that an epi-

demic started with approximately 10 infected 
persons. Initial number of infected persons 
 0i  (zero patients) does not influence the 

maximum number of infected mi  and recovered 

people by the end of an epidemic  l t
r r t


  

(Figure 1). An epidemic will end up naturally 
when collective immunity is achieved and there 
are no new infected people. Variations in initial 
number of infected people lead to changes in a 
period of time during which an epidemic 
reaches its peak and then ends. 

 
Figure 1. Solution to equations (1)–(3)  
at 0 4,R   1α 0.4  1/d and 2α 0.1  1/d 

Parameters 1α  and 2α  determine growth 
rates for a number of infected  i t  and recov-
ered  r t  people. When an epidemic has just 
started and i, we can consider   1s t  . On Oc-
tober 30, 2020 approximately 45.7 million 
people out of 7.8 billion world population all 
over the world got infected starting from the 
beginning of the epidemic; approximately 
0.6 % out of them (1.2 million) died (lethality 
is equal to 2.6 %). In Israel, approximately 
314 thousand people out of 9.5 million are in-
fected, that is, approximately 3 %, and 
2,511 people died (lethality is 0.8 %). Despite 
COVID-19 epidemic has been lasting for sev-
eral months already and there are huge num-
bers of people who got infected and died from 
COVID-19, approximation   1s t   still holds 
quite satisfactorily. When performing mathe-
matical modeling, we can also assume that all 
infected people recover. 

At an initial stage in an epidemic a solution 
to the system of equations (1)–(3) is given as 
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   1s t    (5) 
    2 0α 1

0
R ti t i e    (6) 

    2 0α 1

0

1 1
1

R tr t e
R

   
  (7) 

Basic reproduction number, that is, how 
many people are infected by a single infected 

person, 1
0

2

α
α

R 
 
is a significant parameter that 

determines a character of an epidemic, maxi-
mum number of infected mi  and recovered peo-
ple by the end of an epidemic lr  (Figure 2) [10]. 

 
Figure 2. Number of recovered people by the end 
of an epidemic  l t

r r t



 
as a function of 0R  

at 2α 0.1  1/d and initial conditions  0 1s  , 
  6

00 10i i   , and  0 0r   

At 0 1R   a number of infected people 
goes down naturally without anti-epidemic 
measures being taken; an epidemic ends up. 

At 0 1R   an epidemic will develop until 
collective immunity is formed. When basic 
reproduction number is low, 0 1.1R  , collec-
tive immunity is formed when approximately 
18 % population overcame the disease (recov-
ered people) at 1α 0.11  1/d, 2α 0.1  1/d 
(Figure 2). This percent grows rapidly as R0 
increases and reaches 94 % at 0 3.R   

Computations have revealed that a share of 
infected (recovered) people that is necessary for 
collective immunity formation when a number 
of new infected people is about zero does not at 
all depend on parameters 1α  and 2α , and basi-
cally is determined by their ratio. However, 

a period of time necessary for reaching this im-
munity is inversely proportionate to these pa-
rameters: at 1α 0.3  1/d and 2α 0.1  1/d this 
period is estimated as being equal to 130 days; at 

1α 0.03  1/d and 2α 0.01  1/d, to 1,300 days. 
The maximum number of infected people 

mi  is also determined by a basic reproduction 
number R0, and a period of time necessary to 
reach it starting from the beginning of an epi-
demic is determined by 1α  and 2α   parameters. 
The maximum number of infected people mi  is 
reached at 2 1α αs   and overall number of 
infected were 0(1 1/ ).N R  Further epidemic 
development is associated with a decrease in 
number of infected people though their num-
ber can reach greater values (Figure 1). 

1.1. Model parameters assessment. Pa-
rameters that are components in SIR and other 
models cannot be measured directly since they 
depend on numerous factors, such as popula-
tion density, population mobility, social con-
tacts, lockdowns and how people adhere to 
quarantine measures, age structure of popula-
tion, etc. [8, 9, 10, 16]. Assessments are based 
on statistical data, their completeness and va-
lidity, as well as on establishing a clear corre-
lation between them and «external» factors 
such as lockdown introduction, seasonal fluc-
tuations, vacations and holidays, that deter-
mine authenticity of obtained estimations. 
Contagion intensity and, consequently, model 
parameters will depend on time [10, 16, 17]. 
Basic reproduction numbers R0 given in litera-
ture depend not only on a country and time of 
analysis but also on an applied epidemiologic 
model [10, 17]. The authors of publication 
[11] estimated basic reproduction number R0 at 
the beginning of the epidemic in European 
countries as being equal to 4.22 ± 1.69, with 
its maximum value 6.33 detected in Germany. 
By May 10, 2020 this number went down to 
0.67 ± 0.18. In October there is a new growth 
in morbidity, that is, the second epidemic 
wave [10]. 

Now we estimate SIR model parameters 
for Israel using data given on Worldometers 
web-site that allows one to track daily numbers 
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of infected, recovered, and dead people [18]. At 
the beginning of the epidemic starting from 
March 1 to 30 a number of confirmed infected 
people  i t  grows from 10 to 5,114 (Figure 3); 
there are only 244 recovered people over this 
period, that is, less than 5 %. Parameter 1α , 
a growth rate for a number of infected persons, 
is estimated as 0.21 ± 0.09; a number of in-
fected ones doubles approximately each three 
days. This estimate is well in line with figures 
given for Israel and France [16, 17]. 

 
Figure 3. Time dependence for a number 

of infected i (t) in Israel [8] 

Parameter 2α 0.045 0.03  , recovery rate, 
is obtained basing on data collected after strict 
lockdown was introduced from May 4 to 27, 
when a number of confirmed infected people 
 i t  amounted to several thousands, and average 

daily number of new infected people did not ex-
ceed 30. Typical recovery time, that is a time of 
double decrease in a number of infected amounts 
15.5 days. Further we assume that parameter 2α  
does not change during the pandemic. 

When quarantine restrictions are eased 
off, it is accompanied with the 2nd epidemic 
wave and a number of infected people grows 
exponentially as per a time depending expo-
nent: June 2–22, 0.04 1/day; June 22–27, 
0.045 1/day; June 27 – July 8, 0.079 1/day. 
Bearing in mind that the exponent characteriz-
ing an increase in a number of infected people 
is 1 2α α , parameter 1α  is estimated to be 
equal to 0.085; 0.09; and 0.124 for these time 
intervals respectively. 

At the beginning of the epidemic R0 can be 
estimated as 4.5 without any quarantine meas-
ures or individual or social protection measures 
being taken. When R0 has such a high value, col-

lective immunity will be formed only when 
more than 95 % population have been infected 
and recovered (Figure 4). 

 
Figure 4. Modeling the pandemic in Israel 

This threshold value for collective im-
munity formation is well in line with predic-
tions made in other works [19]. Some re-
searchers think that R0 goes down with time, 
and this threshold will be substantially lower, 
however, not lower than several dozen per 
cent (now registered infected and recovered 
people account for approximately 3 % of the 
population) [10, 17, 19]. At the beginning of 
the 2nd epidemic wave on June 2–22 0 1.9R  ; 
and it is growing as the pandemic develops: 
June 22–27, R0=2; June 27 – July 8, R0=2.8. 

After July 8 there are strong daily fluctua-
tions that do not allow assessing parameters 
reliably. In the next part we are planning to use 
effective values for long time intervals. 

1.2. Wave-like pandemic. Results obtained 
via modeling the pandemic in Israel and the so-
lution to the equations (1)–(3) is given in Figure 
3, and this simulation quite corresponds to mor-
bidity growth (Figure 3). The beginning of the 
epidemic is characterized with exponential grow 
thin a number of infected people over time 

 ~ αExp t  prior to strict lockdown was intro-
duced in early April and an exponential decrease 
in this number in May, 1 2α α α 0   . Step-by-
step quarantine measures cancelling in late 
May – early June resulted in a new increase in 
a number of infected people with parameter 

1α 0.1  growing over time. In July and August, 
when there are vacations in educational estab-
lishments, vacations for workers, and still valid 
quarantine measures, this number goes down. 
The beginning of the academic year causes a 
new growth in a number of infected people with 

1α 0.09   and it is only the repeated most strict 
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lockdown introduced in late September that 
leads to the disease spread slowing down. 

In Israel in November quarantine measures 
are being gradually cancelled. We can predict 
further epidemic development basing on pa-
rameter 1α  values for June-July and September. 
These values are substantially lower than at the 
beginning of the pandemic, 0.21 ± 0.09. It is 
due to people wearing face masks in public 
places, ban on any mass events, distance learn-
ing, etc. Figure 5 shows modeling results. As 
we can see, a slight change in parameter 1α  re-
sults in substantial changes in the results. Thus, 
at 1α 0.09  it is predicted that a threshold 
value for a number of infected people (ap-
proximately 75 thousand), when the second 
lockdown is introduced, is reached in 52 days, 
and at 1α 0.1  this threshold value is reached 
in 42 thousand. Figure 5 shows a range for 
probable pandemic development. 

 
Figure 5. Pandemic prediction 

After October 20 some quarantine meas-
ures were step-by-step cancelled as nonfood 
shops and trade centers were opened, children 
returned to schools, etc. In mid-November there 
was a new exponential growth (Figure 3) in a 
number of infected people, and it went up to 
17,500 over 20 days; more than 30 thousand, 
over 30 days; and approximately 49 thousand, 
over 40 days. Our predictions are well in line 
with values given in Figure 5. 

On December 28 the third lockdown 
(strict quarantine) is introduced in Israel. 

The simplest SIR model contains two pa-
rameters 1α  and 2α  that depend on many fac-
tors (type of a disease, population density, age 
structure, mobility, etc.) and in more common 
case on time. These parameters are determined 

basing on epidemic development in a given 
country, region, or a city. SIR model allows, 
assessing significant parameters at least at a 
first approximation including spread of a dis-
ease, burden on medical organizations, neces-
sary number of beds in hospitals, and expected 
mortality. The latter can be estimated as rele-
vant shares of infected people. However, this 
model does not take into account an actual 
clinical course of a disease and such factors as 
incubation, the illness itself, various clinical 
courses of a disease, age-related differences, 
etc. Several more realistic models were devel-
oped that allow one to account the above-
mentioned and other factors as well as specific 
peculiarities of various diseases [4–12, 17, 20, 
21]. These models are based on an assumption 
that susceptible, infected, and recovered peo-
ple are distributed evenly over space and a 
pandemic is described with finding solutions 
to usual differential equations of (1)–(3) type. 
However, in reality infected people, even in 
such a small country as Israel, are distributed 
extremely unevenly and their distribution is 
not proportionate to population density. Even 
on large cities there are districts with different 
morbidity levels. There are several models that 
take into account uneven distribution of sus-
ceptible, infected, and other people [2, 21–23]. 
Reaction-diffusion epidemiologic models be-
long to this category [2, 4, 7, 22]. 

2. Reaction epidemiologic model. Mathe-
matical description of reaction-diffusion epi-
demiologic models contains a system of equa-
tions in partial derivatives similar to equations 
that describe diffusion with a chemical reaction 
[2, 4, 7, 22]. A number of equations and a type 
of members that correspond to are action de-
pend on a chosen model for infection transfer, 
number of examined population groups distin-
guished as per age and activity (schoolchildren, 
working population, retired people etc.). Reac-
tion-diffusion model parameters such as diffu-
sion coefficients characterize mobility of a 
given population group. Some authors take into 
account natural changes in population number 
due to birthrate and mortality as well as mobil-
ity of recovered people who have immunity 
[22]. However, this population group does not 
influence dynamics of a disease and can be ne-
glected when an epidemic is analyzed. 
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Most research works dwell on one-
dimensional models but we are going to con-
centrate on a more realistic two-dimensional 
one [2, 22]. Let us start with a simple two-
dimensional model based on SIR model that 
allows obtaining several analytic solutions 
along with numerical ones: 

 
2 2

12 2 αn n n
s d n n

s s sa s i
t x y

   
      

  (8) 

 
2 2

1 22 2 α αn n n
i d n n d n

i i ia s i i
t x y

   
       

  (9) 

where sa  and ia  are the parameters that charac-
terize mobility of susceptible and infected people, 
respectively, ns  and ni , are their normalized den-
sities in an examined area. Let us note that density 
of recovered people ( nr ) can be determined via 
finding solutions to equations (8), (9) and 

2 2

22 2 αn n n
i d n

r r ra r
t x y

   
      

 

Let us assume that parameters sa , ia , 1αd , 
and 2αd  do not depend on time and coordinates. 

It is convenient to use dimensionless vari-

ables: τ sa t , 1αξ d

s

x
a

 , 1αη d

s

y
a

  in equa-

tions (8)–(9); the equations are rewritten as: 

 
2 2

2 2τ ξ η
n n n

n n
s s s s i  

  
  

,  (10) 

 
2 2

2
2 2

1

α
ξ η α

n i n n d
n n n

s d

i a i i s i i
a
   

       
  (11) 

In these equations there are two parameters 
that characterize spread of a disease: the first 

one i

s

a
a  

is a ratio of values that characterize 

mobility of infected and susceptible people 

(should not exceed 1); the second one, 2

1

α
α

d

d

, is 

an inverse value of R0 analogue. Boundary con-
ditions depend on what surrounds the consid-
ered territory. When it comes down to Israel 
and some other countries with relatively small 
squares that imposed strict limitations on mov-

ing into and out of country people, as well as to 
some remote Russian regions, we can believe 
that a flow of infected and susceptible people 
across a border  is equal to zero, that is: 

0ns
n 





  and 0ni

n 





 , 

where n  is a single vector which is normal to 
boundary  . 

Figure 5 shows how an epidemic develops in 
a square area  4 ξ 4; 4 η 4       with initial 
conditions     2 20,ξ,η 0.0001Exp 20 ξ ηni       

 

and 1ns   in the whole area. All calculations 
used in the present work were accomplished with 
Mathematica 12. 

As we can see, when 5  , infected people 
are distributed practically evenly, and a model 
belonging to SIR type similar to that described 
in the previous section can be applied in further 
analysis of an epidemic development. For the 
given initial and boundary conditions, a time 
needed for reaching a uniform distribution of 
infected people is estimated as several (3–5) 

characteristic diffusion time 
2

2τ
πx
L

 , where L is 

a half of a square side. 
People who were infected with coronavi-

rus infection account for a relatively small share 
of the total population, therefore COVID-19 
epidemic can be assumed to be at its initial 
stage. Non-uniform spatial distribution of in-
fected people at this stage in the epidemic that 
is observed in many countries and even in large 
cities is due to uniform distribution of infected 
people not being reached yet, and non-uniform 
distribution of susceptible people, and also pa-
rameters sa , ia , 1αd , и 2αd  being dependent on 
time and coordinates (see the next section). 

The considered example (Figure 6) has a 
certain peculiarity that is a decrease in a num-
ber of infected people in the center, despite 

1

2

α 1
α

d

d

 . To explain this phenomenon, let us 

consider an approximation that allows obtain-
ing an analytical solution. 

At an initial stage in an epidemic, just as 
it is the case with COVID-19, we can assume 
that density of susceptible people changes only 
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                              a                                          b                                                       c 

Figure 6. Epidemic development in a square area 16x16 at 1i

s

a
a

 , 1α 0.22d  , and 2α 0.048d  :  

spatial distribution of infected people:  a) at τ 0.1 ; b) at τ 0.5  and c) at τ 5  

slightly and does not depend on coordinates, 
i.e. const 1ns   . In this case, spread of a dis-
ease is described with a solution to the follow-
ing equation: 

  
2 2

1 22 2 α αn n n
i d d n

i i ia i
t x y

   
       

 (12) 

If we replace 
   1 2, , exp α αn n d di i t x y t     to solve the 

equation (12), we get a new equation for 
 , ,ni t x y  

 
2 2

2 2
n n n

i
i i ia
t x y

   
     

  
.  (13) 

Analytical solutions for the equation (13), 
depending on boundary conditions type, a 
shape of a boundary, and initial conditions, are 
given, for example, in a Handbook on linear 
equations in mathematical physics1. At an ini-
tial stage in an epidemic infected people are 
close to the first infected ones, and in this case 
we can use an approximation for an infinite 
range  ;  x y         and assume 
that at an initial moment of time 0t  infected 
people are uniformly distributed in an area 
given as  0 0 0 0;  x x x y y y      . The 
initial distribution is 

  0 0 0

0 0

at  and , 
0, ,

0 at  and .
n

n

i x x y y
i x y

x x y y
     

 

The solution to equation (12) 

 

 

 

0 0 0

0 0

1 2

, ,

4 2 2

2 2

exp α α

n

n

i i

i i

d d

i t x y

i x x x xerf erf
a t a t

y y y yerf erf
a t a t

t



     
             
     

            
  

  (14) 

where  erf x  is the probability integral. Let us 
note that analytical solutions are more compli-
cated for other initial and boundary conditions, 
however, their qualitative behavior is similar. 

Integrating (14) over the whole area, we 
obtain time dependence for the total number of 
infected people 
    1 2α α

0 0 04 d d t
ni t i x y e    (15) 

Accounting that 0 0 0 04 ni x y i  is the nor-
malized initial number of infected people and 
comparing solutions to (6) and (15), we can 
conclude that 1 1α αd   and 2 2α αd  ; these pa-
rameters and their dependence on time can be 
estimated with the SIR model. As well within 
the SIR model, an epidemic ends up at 

1 2α α , although a disease spreads across the 
considered area and occurs in new districts. 

When performing qualitative analysis, we 
take 0 0y x  and in the center of the area 
 0;  0x y   density of the infected people is 

   
2

0
0 1 2,0,0 exp α α

2n n
i

xi t i erf t
a t

 
      

 
  (16) 

__________________________ 
 
1 Polyanin A.D. Handbook on linear equations in mathematical physics. Moscow, Phizmatlit Publ., 2001, 576 p. (in Russian). 
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In expression (16) erf  decreases with 
time, and exp  grows. It is convenient to replace 

t  with 2
0

4 iat t
x

 , then dependence of infected 

people density in the area center is character-

ized with just one parameter  
2
0

1 2γ α α
4 i

x
a

  : 

 
2

0
1,0,0 exp γn ni t i erf t
t

 
     

 



. 

Depending on   value, two scenarios are 
possible (Figure 7): the first is a monotonous 
growth with time ( γ 0.7 ) and the second 
one is a slight growth in  , 0,0ni t , and then a 
decrease with time ( γ 0.1 ). These scenarios 
are divided by γ 0.52 . The first scenario 
can become a reality when an epidemic starts 
in a densely populated area (the beginning of 
COVID-19 epidemic in China); the second, 
when a disease is brought into a country and 
starts from an airport, railway station, etc. At 
any γ  values and longtime intervals  , 0,0ni t  

grows proportionate to  1 2
1exp α α t
t

   . This 

analysis provides a qualitative description of 
the numeric results given in Figure 7. 

 
Figure 7. Initial stage of an epidemic: time 
dependence of a number of infected people 

 in the center of contagion 

It is convenient to analyze how a disease 
spreads in an assumed axially symmetrical 
spread. On one hand, spread of a disease is 
close to axially symmetrical one in certain re-
gions and cities. At an initial stage it is so even 
is a square area (Figure 8). On the other hand, 

such an approximation being considered al-
lows illustrating the results more clearly. The 
equations (8) and (9) are rewritten as 

 1ρ α
ρ ρ

n n
s n n

s sa s i
t

   
     

  (17) 

 1 2ρ α α
ρ ρ

n n
i n n n

i ia s i i
t

   
      

  (18) 

with boundary 

    
ρ 0

0
ρ
ni







;  

ρ ρ

0
ρ

m

ni







;  

 
ρ 0

0
ρ
ns







; 

ρ ρ

0
ρ

m

ns







;  (19) 

and initial 
 0,ρ 1ns  ;  

   20,ρ 0.04Exp[ ρ / 0.01]ni     (20) 

conditions. 
Here 2 2ρ x y  , ρm  is the external 

boundary radius for the considered area; it is 
assumed that there are no people moving into 
and out of it; numeric parameters 0.04 and 
0.01 in initial conditions for ni  (20) correspond 
to an initial number of infected people equal to 
10–6 from the total population in the area. Re-
sults of simulation of spatio-temporal epi-
demic development are presented in Figure 8. 

For each radius the time dependences of 
numbers of susceptible and infected people are 
similar to these presented in Figure 1. However, 
the maximum number of infected and time nec-
essary to reach it, just like in SIR model, depend 
on 1α , 2α  and their ratio as well as on a radius, 
values of parameters 1a  and 2a  (please, compare 
Figures 8b and 8c), as well as their ratio (please, 
compare Figures 8a and 8b). The same time de-
pendence exists for integral characteristics, the 
total numbers of susceptible, infected and recov-
ered people in the whole area (Figure 9).  

Despite susceptible people are distributed 
uniformly at an initial time, the maximum den-
sity of infected people decreases as a distance 
from the diseases focus grows (Figure 8, 10a). 
However, a number of infected people per a 
unit of a radius length    ,ρ 2πρ ,ρnr ni t i t  is  



V.L. Sokolovsky, G.B. Furman, D.A. Polyanskaya, E.G. Furman 

Health Risk Analysis. 2021. no. 1 32 

 
                              a                                         b                                                       c 
Figure 8. Spatio-temporal epidemic development; yellow color shows normalized density of susceptible 

people ns , blue color – infected ni : a) 1sa   and 1ia  ; b) 1sa   and 0.3ia  ; c) 0.1sa   and 0.03ia  . 
In all cases 1α 0.22 , 2α 0.048  and ρ 20m  ; sa  and ia  are values normalized by the actual 

(dimension) coefficient of the susceptible people mobility λ  for the case a), and distance ρ  
is given in units λ  

 
Figure 9. Dependence for a number of susceptible, 
infected, and recovered people in the whole area. 

Parameters are taken just as for Figure 8b, 
distribution of recovered people was determined 

by solution to equation of a type (17), in which the 
last member to the right in it being replaced by 

2α ni , with zero initial conditions 

increasing with a distance from the center 
(Figure 10b). Therefore, at the same social 
conditions (population density, mobility of 
susceptible and infected people, the same pa-
rameters that characterize infection and recovery 
rates) and in spite of active migration to the cen-
ter, number of infected people will be substan-
tially higher at the periphery than at the center. 

The higher density of infected people at 
the center is caused by the following: at the 
beginning of an epidemic density of suscepti-
ble (ρ 1 ) close to a disease focus goes down 
due to their moving into «infected» group. At 
the same time this density practically stays the 
same in remote areas where infection has not 
yet occurred. Within the model this situation  

 
a 

 
b 

Figure 10. Density of infected people a) and a 
number of infected ones per a unit of a radius 

length b) for the case shown in Figure 8b 

results in susceptible people moving to the 
center. For the case shown in Figure 7b, in an 
area limited by ρ 1 , and for 200 days 
( 200t  days)   21,1 / πρmN  – susceptible 
people migrate more than 1/3 initially being 
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there  2π / πρmN ; for the case shown in Figure 
7b, a number of migrated people is several 
times higher than  2π / πρmN . A model based 
on equations (8) and (9) can be applied only 
with certain limitations for describing spread 
of a disease in case susceptible people are dis-
tributed non-uniformly. Even in case there is 
no disease, the solution to equation (8) de-
scribes reaching uniform distribution of sus-
ceptible people regardless of their initial dis-
tribution. 

3. Heterogeneous reaction-diffusion epi-
demiologic model. Population migration can 
be divided into two types: long-distance trav-
els to other cities, regions, or countries and 
every day trips (home–work, studies, shop-
ping, etc.). The first type involves a disease 
being carried over long distances and it is ran-
dom in its nature. Such spread of a disease can 
be prevented by imposing limitations on such 
travels (limited and/or cancelled flights, clos-
ing a country completely, etc.), as well as via 
introducing sanitary-epidemic measures: pre-
liminary diagnostics and quarantine after arri-
val in a country. These measures were taken in 
Israel and some other countries at the begin-
ning of COVID-19 epidemic. In countries with 
large territories (Russia, China, Canada, and 
the USA) such measures are to be taken in 
specific regions and areas. 

Daily migration occurs within a settlement, 
in case of a megacity including its satellites (for 
example, Moscow, Tel-Aviv, or New-York). In 
the morning people flows go into downtown 
with high population density; the situation is 
inverse in the evening. The characteristic epi-
demiologic times 11/ α  and 21/ α  are signifi-
cantly longer than a characteristic time of daily 
migration that is equal to approximately half a 
day. It allows introducing averaged density of 
susceptible people as 

      , , , / 2n n ns t r s t r s t r     (21) 

where  ,ns t r  is the density of people who 
permanently live in a given district, and 

 ,ns t r  is the density of migrating people. 
The latter value can be both positive for down-

town and negative for periphery. At an initial 
time of an epidemic 

   0, 0,n ns r s r d N


     
 

where   is the square of the considered area. 
Further we assume that density of susceptible 
people changes only due to their moving into 
the infected group. Equations (8) and (9) are 
given as follows 

 1αn
n n

s s i
t


 


    (22) 

1 2α αn n n
ix iy n n n

i i ia a s i i
t x x y y

                  
  (23) 

and coefficients 1α , 2α , ixa , and iya  depend on 
time and coordinates, and coefficients ixa  and iya  
that characterize mobility of infected people 
generally depend also on a direction. Let us 
note that if susceptible people are assumed to 
be immobile, coefficients ixa  and iya  rather 
characterize local spread of a disease and not 
mobility of an infected people. 

3.1. Influence exerted by lockdown on spa-
tio-temporal spread of a disease. Both the local 
and integral maximum numbers of infected 
people account of dozens per cent of population 
(Figures 1, 8, and 9). In order to decrease a 
number of infected and dead people as well as 
to prevent medical aid collapse, limitations and 
lockdowns are introduced, when a share of in-
fected people is still insignificant, and we can 
assume that ns  depends only on implemented 
limitations and any changes in it due to conta-
gion are negligible. In this case changes in ns  
are due to changes in  ,ρns t , caused by limi-
tations or lockdown. We will assume that coef-
ficients 1α , ix iya a  depend only on time, 
 ,ρ 1ns t   and parameter 2α , that character-

izes the recovery rate is constant. For the axi-
ally symmetrical approximation within the in-
troduced assumptions, epidemic development is 
described with a solution to the equation 

  

   1 2

ρ
ρ ρ

α ,ρ ,ρ α

n n
i

n n n

i ia t
t

t s t i i

   
     

 
  (24) 
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with boundary (19) and initial (20) conditions. 
Lockdown introduction leads to lower 

population mobility, regarding both suscepti-
ble and infected people, as well as their meet-
ings and, consequently, contagion among sus-
ceptible being less probable. To demonstrate 
lockdown efficiency, we assume that: 

– lockdown is introduced at 25t  days, 
the total number of infected people is ap-
proximately 0.06 % (the first lockdown was 
introduced in Israel when a number of infected 
people was approximately 0.1 %) and is can-
celed at 55t  days; 

– after lockdown is canceled, all model 
parameters return to their initial values; 

– efficient distribution of susceptible peo-
ple density ns is given as 

  
   

 
 

2
2 2

2

exp ρ
ρ exp ρ

exp ρ 1
m

n m
m

b t b t
s b t

b t

         
   (25) 

– lockdown is characterized with a de-
crease in parameters ia  from 0.3 to 0.1;  

1α  from 0.22 to 0.02 and 2ρmb  from 0.693 to 
0.1054 (dependence of susceptible density on 
a radius prior to and during a lockdown is 
shown in Figure 11); 

– as it was above, 2α 0.048  and ρ 20.m   

 
Figure 11. Dependence of susceptible people 
density on a radius prior to (blue curve) and  
during lockdown (red curve); green dotted 

 line corresponds to even distribution 

Computation results are presented in 
Figure 12. 

In the considered range density of infected 
people does not exceed 2 % of the population 
density; it justifies our assumption that changes 
in density of susceptible people can be ne-
glected. For each radius time dependence for 
density of infected people is qualitatively similar 

to the same dependence for the total number of 
infected ones (Figure 5). There is a growth in a 
number of infected people that is close to expo-
nential prior to lockdown introduction, a de-
crease in a number of infected people during 
lockdown and a drastic rise after lockdown has 
been canceled and population got back to normal 
life (a wave-like epidemic). However, at ρ 15  
density of infected people, both prior to and dur-
ing lockdown, is finite but also negligible, ap-
proximately 10–6, it can be lower than a single 
infected person per one unit area. It indicates that 
lockdown introduction in the area ρ 15  is an 
excessive measure that does unjustified damage. 
Spread of a disease in this area is a drawback 
typical for models based on solving equations 
similar to heat conductivity ones: a paradox of 
an infinite rate at which heat spreads; when it 
comes down to an epidemic, it is a paradox re-
lated to an infinite disease spread rate. 

 
Figure 12. Spatio-temporal distribution of infected 

4. Reaction-diffusion epidemiologic 
model with finite contagion time. In the previ-
ous sections we applied parabolic equations to 
describe spatio-temporal spread of a disease; 
these equations have a physically paradoxical 
property, namely infinite rate at which distur-
bance spreads [24, 25]. When it comes down to 
epidemiologic models, it means that a disease 
spreads instantly: at an area boundary at ρ 20  
a reaction-diffusion model instantly gives insig-
nificant but still finite density of infected people. 
It results from a non-apparent assumption that 
infection spreads from infected to susceptible 
persons immediately thus making the latter 
move into the «Infected» category. In actual 
conditions a disease process is more complicated 
and can consist of at least two stages: incubation 
(an infected person is not a source of contagion 
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during a part of this period and has no apparent 
clinical signs of a disease) and a disease itself. 
SEIR model (Susceptible-Exposed-Infected-
Removed model) allows taking incubation into 
account [9, 10, 17, 20]. Three states considered 
within the SIR model are added with one more 
state, Exposed or infected in their incubation pe-
riod. To introduce this state into the system of 
equations (8)–(9) we should add one more non-
linear parabolic equation. However, this ap-
proach does not solve an issue related to infinite 
disease spread rate. To resolve the issue, we 
suggest using Cattaneo-Vernotte model [24, 25] 
that leads to a finite spread rate. Within the 
model relaxation (delay) time τrel  is introduced 
and in general case the system of equations  
(8)–(9) can be represented as 

  

1α

n n
sx

n
sy d n n

s sa
t x x

sa s i
y y

        
  

    

  (26)  

  

2

2

1 2

τ

α α

n n n
rel ix

n
iy d n n d n

i i ia
t t x x

ia s i i
y y

           
  

     

  (27) 

with its parameters depending on time and co-
ordinates. 

Equation (27) is a hyperbolic one that’s 
allows obtaining а finite rate of disturbance 
spread and is widely used for solving heat and 
diffusion tasks [24, 25]. This equation contains 
the second time derivative; to find numerical 
solution it is necessary to set an additional ini-
tial condition to all mentioned above. Relaxa-
tion time τrel  is a characteristic showing the 
process disequilibrium and it takes into ac-
count flow inertia; in our case it is a delay (in-
ertia) in contagion. At an initial moment of 
time we can consider that 

  
0

, ,
0n

t

i t x y
t







  (28) 

Solution to the system of the equations 
(26) and (27) in axially symmetry is given in 
Figure 13. 

The solution is similar to computations 
obtained for the model based on parabolic 

equations (17) and (18) (Figure 8). However, 
when a delay in contagion is taken into ac-
count, it leads to slower disease spread and a 
front of a disease spread occurs, that is, a mov-
ing frontier between an area where there are 
infected people and an area where such people 
are absent. Density of infected people goes 
down to zero smoothly as this frontier is get-
ting closer and 0ni   beyond it. This is the 
principal difference between two solutions; it 
is shown in Figure 14. 

A decrease in τrel  approximates solution 
to the equations (26) and (27) to computations 
made for equations (17) and (18). However, 
there is a frontier even for small τrel  values: at 
ρ 12b   for τ 1rel   and ρ 15b   for τ 0.1rel  . 
Predicting how this frontier is going to move 
allows scientific substantiation for gradual 
lockdown introduction. 

 
Figure 13. Simulating an epidemic taking into 

account finite contagion period. Initial and 
boundary conditions are taken from (19), (20),  

and (28); the parameters were taken as constant: 
1sa  , 0.3ia  , 1α 0.22 , 2α 0.048 , and τ 1rel   

 
Figure 14. Spatial distribution of infected  

people at 30t  : blue curve means τ 1rel  ;  
red curve, τ 0.1rel  ; black curve, τ 0rel    

(solution that does not take delay into account) 
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Conclusion. In this work we have analyzed 
spatio-temporal epidemic development and in-
fluence exerted by lockdown introduction on 
spread of a disease. Discussed reaction-diffusion 
epidemiologic models allow taking into account 
non-uniform population distribution, changes in 
population mobility and frequency of contacts 
between susceptible and infected people due to 
quarantine measures. It was shown that parame-
ters that characterized infection and recovery 
rates could be estimated with simpler models 
belonging to SIR type. A reaction-diffusion 
model that has been modified in this work al-
lows taking into account daily migration of 
population and its dependence on time. 

We suggested a spatio-temporal model in 
this work that took into account a delay in con-
tagion (incubation period when an infected 
person is not a contagion source); the model 
revealed a possibility that the front of a disease 
spread might occur. 

Model parameters depend on a country; in 
countries with large territories, on their part; they 
can be different in different districts in a megacity. 
These parameters depend on many factors such as 
population density, population mobility, age 
groups, an extent to which population is involved 
into occupational activities, and types of these ac-
tivities. Correct assessment of these parameters 
depends on statistic data being complete and reli-
able, that is correct diagnostics, proper accounting 
of infected people, etc. Thus, statistics ranks only 
those among infected people who applied for 
medical aid to medical organizations and had the 
diagnosis confirmed by medical experts. Statistical 
data do not cover infection carriers, patients with-
out any symptoms and patients with a disease in its 
mild form who didn’t apply for medical aid. A 
study that focused on antibodies occurrence re-
vealed that a number of such infected people who 
spread a disease could be several times higher than 
it is stated by official statistics [16, 26]. 

Efficiency of personal protective equip-
ment (face masks and gloves) and quarantine 
measures to a great extent depends on how 
disciplined people are; and variations in model 
parameters that occur due to limitation being 
introduced can change considerably over time 
and depend on a location. 

Correct prediction of an epidemic devel-
opment becomes more vital at the moment due 
to new and more contagious COVID-19 virus 
strains occurring in England, the SAR, and 
some other countries. 

Just as this work was being accomplished 
and prepared for publication, a number of in-
fected people grew and new limitations were 
introduced in some countries. However, an 
assumption used in this paper that a number of 
susceptible people and their density have 
changed only slightly is still valid. 

In December 2020 vaccination started in sev-
eral countries. As the equation (2) shows, vaccina-
tion will be successful when  0 1R s t   is reached, 
that is, a share of insusceptible people (recovered 
and vaccinated) is higher than  01 1/ 100 %R  . 
At 0 4.5R   the threshold amounts to 78 %. In 
case insusceptible people account for such a share 
of population, any occurred disease focus will end 
up without taking any quarantine measures. Quar-
antine measure introduction and adherence to them 
results in a decrease in R0 and a minimum number 
of vaccinated necessary for an epidemic to stop. 
However, cancellation of such measures and a lo-
cal occurred disease focus will lead to a new epi-
demic wave. 
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