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The paper dwells on certain mathematical models showing how epidemics develop, namely, logistic ones, SIR-model, and 

some others. There is also a review of articles that focus on such models showing dynamics of incidence with COVID-19 infection. 
These models are often successfully applied for data collected in a whole country but on a regional level there are difficulties due to 
peculiarities of calculating mortality figures in Russia. In this case regression models can be useful with their obvious advantage at 
the initial stage in an epidemic process. They also include exogenous variables that influence mortality, for example, a number of 
doctors and nurses per a hospital, how well hospitals are equipped with ALV devices, and a number of available beds in them. 

Our research goal was to build up a linear regression model that could be used as a basis for estimating regional mor-
tality caused by COVID-19 as well as for more efficient distribution of all the resources mentioned above. 

The model is built as per a set of resource parameters including data on «active cases». Preliminary three variables that showed 
data on resources available to communicable diseases departments in hospitals were transformed into a new single one via linear trans-
formation. Then the model was tested on a training sample containing an endogenous variable on mortality and four factor ones including 
prevalence of active virus carriers. Regions were included into training data with different lags; they were included into such daily samples 
when death cases were registered rarely. Then the estimated model was applied with other values. It turned out to be quite efficient in esti-
mating COVID-induced mortality for regions from trainings samples as well as for several others (for certain intervals). 

As a result, we built a regression model and estimated its precision; the model showed a relation between mortality in a region 
and prevalence of active SARS-CoV-2 carriers and availability of resources to hospitals in it. It can be useful when these resources are 
distributed. It can also be used to build SIRD, SEIR, and SEIRF models at a regional level when choosing parameters in them related to 
mortality. A methodology itself that can be similarly applied for other epidemic processes also deserves certain attention. 

Key words: regression model, mortality estimation, COVID-19, coronavirus infection, logistic equitation, SEIR, SIR, ALV. 
 

 
 There are a lot of scientific works on is-

sues related to SARS-CoV-2 pandemic; they 
can be found on elibrary web-site and some 
others. For example, K.V. Zhmerenetskii and 
E.N. Sazonova concentrate on epidemiologic 
and other peculiarities typical for COVID-19 
in their review; other authors examine and 
discuss issues related to collecting data on 
morbidity and mortality as well as validity of 
statistics [1–7]. O.M. Drapkina and I.V. 
Samorodskaya declared in their work that it 
was necessary to build prognostic mathemati-
cal models; in particular, the present work 
focuses exactly on the matter [3]. S. Koz-
lovskii, apart from morbidity and mortality 
accounting, considers modeling question in 
his work as well [5]. 

Let us turn our attention to issues related 
to mathematic modeling of an epidemiologi-
cal process (EP) as importance of building up 
a sufficiently precise model for COVID-19 
has been widely recognized [3, 5, 8]. Such a 
model can give grounds for more efficient 
decision-making and it will allow reducing 
mortality, easing off negative consequences 
of the epidemic, and saving resources. Differ-
ent approaches to building models showing 
EP dynamics are described in a review by 
M.A. Kondratyev in which he considers arti-
ficial neural networks, simulation and statisti-
cal modeling, etc. If we simplify a classifica-
tion of approaches proposed in his work, we 
can spot out two types of models, determinis-
tic and stochastic ones [9]. 
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First of all, we are going to give a brief de-
scription of models belonging to the first type 
and how to apply them to simulate COVID-19. 
When building up a model taking into account 
peculiarities in EP development, experts divide 
population living on a certain territory (a coun-
try or a region within it) into several sectors 
such as «susceptible to virus», «infected», etc. 
First, a block diagram showing EP development 
over time is built; it describes the possible tran-
sitions of persons from one sector to another 
with different intensities (model parameters). 
The latter are estimated in a different way; 
some – according to data taken form literature, 
others – as per statistic data collected for a 
given territory. Transfers between sectors in a 
block diagram are formalized basing on a sys-
tem of differential equations. Thus, Baroyan-
Rvachyov’s model that was later implemented 
in EpidMod computer system used a system of 
non-linear integro-differential equations in par-
tial derivatives with relevant boundary and ini-
tial conditions; it was taken as per analogic 
models existing in hydrodynamics. Models 
based on equations in partial derivatives of a 
function of two variables (time and a patient’s 
age) exist at the moment [10]. However, most 
models that describe EP development over time 
are based on a system of ordinary differential 
first-order equations. SIR model was created 
quite a long time ago and its abbreviation 
comes from English words «susceptible», «in-
fected», and «recovered» [5, 8, 9, 11]. Later its 
certain modifications were developed; they 
were as SEIR, SEIRF, SIRD models, etc.; the 
last two obviously take into account a decrease 
in a number of infected people due to mortality: 
D letter means death caused by an infection and 
F means death caused by complications. Start-
ing from late 1990-ties, elibrary has been ac-
cumulating works with such models and now 
there are more than a hundred of them stored in 
it; most of them are performed by foreign re-
searchers. SIR and SEIR models are widely 
used now to analyze dynamics of processes go-
ing on in social networks when experts examine 
how specific information is being spread 
through them [12]. SIRD model is used in a 
work by P.V. Khrapov, A.A. Loginova to ana-
lyze data on COVID-19 for the RF and some 
other countries [11]. A similar model, but in its 

finite-difference form, was applied in a research 
work by O.V. Drugova, E.A. Pavlov et al. when 
they examined COVID-19 dynamics in Nizhniy 
Novgorod region [13]. Here, the number of 
people divided into four sectors (or compart-
ments)  was chosen as the main variables of the 
model, namely «susceptible» (S); «infected» 
(I); «recovered» (R); and «deceased» (D); it 
was assumed that up to 30 % in sectors I and R 
cannot be detected. After all the parameters 
were fitted, the model was adjusted to actual 
data on initial part of COVID-19 growth in the 
region; and then it was used as a basis for pre-
dicting further dynamics in the epidemic. 

Baroyan-Rvachyov’s model belongs to 
SEIR type where E letter means another sec-
tor, namely «exposed» (people who are going 
through incubation stage). The sector is deter-
mined by a period of time starting from a mo-
ment when new coronavirus enters a human 
body in a dose sufficient for contagion and up 
to a moment when a person falls sick with 
COVID-19. M.V. Tamm applies an expanded 
SEIR model in his work taking certain peculi-
arities existing on some territory into account; 
they can be population age groups etc. [14]. 
After all the parameters are fitted, the model is 
used to analyze several scenarios of fighting 
against this new EP in Moscow. A.V. Matveev 
applied a SEIR-type model in his work that 
has been modified taking COVID-19 peculi-
arities into account; the model was imple-
mented with AnyLogic simulation modeling 
tool [15]. As a result, a few scenario calcula-
tions were accomplished for two capital cities 
and recommendations were given on equip-
ping hospitals with beds for contagious pa-
tients with coronavirus and artificial lung ven-
tilation (AVL) devices; a forecast on a number 
of deceased was made. 

Another model that applies a stochastic 
approach to estimating is described in a work 
by A. Godio and F. Pace et al. [16]. They also 
use a generalization made for EP by L. Peng 
and W. Yang et al. [17]. As a result, a SEIR-
model was developed that uses a number of 
specific parameters. They were estimated as per 
research data obtained by A. Godio and F. Pace 
et al.; in particular, there was a mortality coeffi-
cient k(t) that depended on t counting and effi-
ciency of treating patients. Besides, S. Peng-
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peng and Shengli et al. [18] suggested another 
SEIR-model taking into account reduced conta-
giousness of infected people who didn’t have 
any COVID-19 symptoms as well as using 
variability in incubation duration. et al. [19] de-
scribed a SIR-model and two SEIR-model 
modifications in their work. Unknown parame-
ters in the research were found via fitting the 
suggested model to data obtained in People’s 
Republic of China from January 23 to February 
10. As a result, a short-term forecast was made 
and it was estimated when a peak in contagion 
number was expected in China; the work also 
contains a code for the program in MATHLAB. 

A.V. Nikitina, I.A. Lyapunova C. et al. [19] 
described a SIR-model and two SEIR-model 
modifications in their work. They suggested cer-
tain changes for these modifications that took 
into account peculiarities related to how immu-
nity was acquired as well as a lag occurring in 
detecting infected people; they also examined 
sensitivity of the described models. These results 
can be applied in a model building for COVID-19. 
Also, almost 50 years ago Russian researchers 
started to use a SEIRF model and N.F. Ga-
malei’s National Research Center for Epidemi-
ology and Microbiology created relevant soft-
ware for it at the end of the 20th century. This 
model is applied by Z. Liu, P. Magal et al., and 
F. Ndaïrou, I. Area et al. in their works to proc-
ess data on COVID-19, and in the latter one it is 
built already with 8 sectors; there is an expres-
sion for D(t), a number of people who died on a 
day t, that includes three parameters [20, 21]. 
We should note that the model (1) which we 
suggest in the present work can be useful for se-
lecting values of a parameter k(t) mentioned by 
A. Godio and F. Pace et al. or selecting  parame-
ters in the expression D(t) [16, 21]. 

Apart from an approach that involves 
building and finding solutions to a system of 
differential equations, there are simpler ways 
to do modeling. They are used in many works 
focusing on predicting what characteristics an 
examined EP might have basing on finding a 
solution to an ordinary differential equation 
created by P. Verhulst and its generalizations 
[22–25]. That mathematician applied it a very 
long time ago to analyze population growth in 
dynamics as per time  t. The equation is widely 
spread in biophysics; at present it is applied in 

modeling a growth in number N(t) of persons  
infected with SARS-CoV-2 as per data col-
lected in People’s Republic of China and Swe-
den [22]. This work focuses on three models 
based on Verhulst equation, gives relevant so-
lutions, and also dwells on predicting problem. 
After N(t) value has been differentiated, we can 
estimate both a moment when an EP reaches its 
peak and a number of necessary beds in hospi-
tals according to the research performed by 
A.A. Kurkin, O.E. Kurkina et al. [22]. One of 
the described generalized models leads to a 
differential-difference equation. The model 
takes into account incubation period that oc-
curs in EP development as well as the fact that 
approximately 4 % people who fall sick with 
COVID-19 might die due to it. 

Models belonging to this type are less sen-
sitive to quality of available statistical data than 
sector-type models that have been described 
above. They are built on daily counts of a time 
series, in particular, for a series on a number of 
people who fell sick with COVID-19 or died 
due to it, and include certain parameters. For 
example, N. Fabiano and S.N. Radenović fitted 
Verhulst model to the data on a number of Ital-
ian citizens who fell sick with COVID-19 [23]. 
In another research work the model was modi-
fied taking into account specific features of the 
infection and it allowed obtaining a precise ana-
lytical solution when certain assumptions were 
introduced [24]. Parameters of the solution 
were estimated as per data collected in China 
and, as a result, there was good congruence be-
tween the model and EP dynamics, both for 
people who were sick and overall number of 
deaths in People’s Republic of China [24]. 

Verhulst model is also used in its discrete 
variant which has two parameters. This logistic 
equation started to be widely used to examine 
various processes after it was introduced by 
M. Feigenbaum, an American scientist. Feigen-
baum’s discrete model was applied to examine a 
number of infected people in a dozen countries 
and two megacities in a research work by 
E.M. Koltsova, E.S. Kurkina et al., and its pa-
rameters were estimated as per an overall num-
ber of people who fell sick with the infection in 
China [25]. There were 4 variants of growth in 
overall number of infected people in Moscow 
and the mildest one was called «Israeli». As per 
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this variant, by the end of the EP there will have 
been totally 300 thousand people living in Mos-
cow infected with SARS-CoV-2 and it is well in 
line with 248 thousand people detected on Au-
gust 10 with daily growth equal to 700 cases. 

Finally, V.V. Boyarintsev, R.S. Pal’min 
et al. [8] revealed certain regularities in EP de-
velopment in their research basing on analysis 
of overall number of infected people I(t) living 
on a given territory. As a result, basing on a set 
of hypotheses-assumptions, they suggested a 
recurrent formula for calculating I(t) on a t-th 
day in EP. Basing on it, dependence as per t 
was obtained for a function showing how a 
share of infected people was distributed, and 
then forecasts were made for different coun-
tries and Moscow as well.  

However, a lot of researchers who examine 
EP basing on SIR-models and their modifica-
tions note that obtained solutions are not stable 
and it prevents them from making reliable fore-
casts how EP is going to develop over a period 
longer than a week [5, 8]. A.V. Matveev also 
states that forecasts have only approximate re-
sults [15]. S. Kozlovskiy and O. Boldyrev note 
that many parameters applied in EP models are 
to be estimated as per regional statistics in case 
the models be applied to describe the process in 
a specific region [5]. And many specialists on 
statistic data believe regional statistical data to be 
of low quality [4, 5, 7]. As per experts’ esti-
mates, corruption in statistical data has been 
growing since late April 2020. M.V. Tamm also 
has no trust in figures on mortality in regions 
[5, 14]. Moscow is commonly recognized as an 
etalon region when it comes to transparency and 
authenticity of data on mortality caused by 
COVID-19. As for RF regions, more qualitative 
data are provided by the Rosstat and regional 
register offices. The latter provide monthly data 
on their official web-sites stating the overall 
number of deaths over a month but without rea-
sons that caused them; it should be mentioned 
that such publications are issued with consider-
able delays [4, 6, 7]. Besides, certain parameters 
are unknown at initial stages in EP development, 
and it is due to this fact that maximum simplest 
models are applied at these stages as such mod-
els contain minimum number of parameters [22]. 
Such models include regression analysis models 
and time series models. 

If we consider non-deterministic EP models 
that naturally take into account existing data 
noisiness, than we should examine a work by 
D.V. Melik-Guseinov, N.N. Karyakin et al. [26], 
where several regression models for analyzing 
mortality caused by COVID-19 in the RF as a 
whole were built up and estimated. Thus, Model 
1 in its variant 2 is given as ln(Y) = ln(X)·β1 + β0, 
where Y is a number of new death cases over the 
last day and X is a number of new incidence 
cases over the same day; β0, β1 are parameters in 
the model that are to be estimated. After substi-
tuting β0, β1 estimates taken from the research by 
D.V. Melik-Guseinov, N.N. Karyakin et al. as 
per least square procedure (LSP) the authors ob-
tained a linear regression model with determina-
tion coefficient R2 = 70 % [26]. Besides, they 
suggested Model 2 with R2= 80 %; it was built 
basing on Model 1 after introducing one more 
variable X2  or «a number of severe COVID-19 
cases in j-th region». 

I.A. Lakman, A.A. Agapitov et al. suggest 
ARIMA model that is rather hard to build as 
well as an adaptive Holt – Winters’ ARIMA 
model or Box – Jenkins’ «autoregressive moving 
average» [9, 27]. When they are used together 
with SIRD model, it allows making highly pre-
cise forecasts for short-term morbidity, mortal-
ity, and survivability among COVID-patients on 
a specific territory. However, it is assumed for a 
SIRD-model that coefficients applied to estimate 
probabilities of contagion, recovery, or death are 
stable over a time period t and it is not in line 
with Russian practice. It results in a necessity to 
re-adjust a model frequently in order to obtain 
reliable forecasts [27]. 

Due to all the above mentioned difficul-
ties modeling is less frequently applied for re-
gions in the RF than for countries, Russia as a 
whole, or Moscow. Besides, some statistical 
models have some advantages in comparison 
with sectional or logistic ones. Therefore, 
sometimes both approaches are combined as it 
was made in research works outlined above 
where an Erlang distribution analogue was 
used together with a SEIR-model [9, 27–29]. 
Linear multiple regression models seem quite 
promising among statistical ones [9]. Their 
advantages include a well-developed theory; 
for example, one can build confidence inter-
vals, calculate elasticity coefficients, etc. Such 
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a model can be easily built provided that a user 
is well-qualified to work with IBM SPSS, Sta-
tistica, EViews, or Deductor software. It is also 
present in Excel, MATLAB computer statistic 
programs, Wolfram Mathematica etc., Python 
or R (R-Studio) environment. Finally, it is 
quite easy to take additional factors into ac-
count that can influence COVID-19 mortality. 
For example, we can add a variable that de-
scribes clinical process gravity for a patient, or 
how available medical aid is to him or her; 
there can be a variable showing whether a pa-
tient smokes tobacco or electronic cigarettes 
and if yes than how frequently; there can be 
other factors added into the model. 

We should also note that at present well-
known scientific centers and universities are 
trying to build relevant models for EP in gen-
eral and COVID-19 EP in particular. Among 
them there are Center for Mathematical Model-
ing of Infectious Diseases (CMMID) at the 
London School of Hygiene and Tropical Medi-
cine, Center for Hygiene and Epidemiology at 
the Imperial College (London), Geneva Univer-
sity, Basel University, a lot of universities in the 
USA and other countries [5, 14]. Thus, US 
Centers for Disease Control publish their 
weekly estimates on EP development obtained 
by 24–26 research teams, mostly Americans, 
for overall number of patients who died due to 
COVID-19 [30]. These estimates are given on a 
date t as point and interval predictions for the 
next 4 weeks. A wide set of models is used in 
the process; thus, 11 research groups apply 
various SEIR models (and its stochastic vari-
ants SEIS, SEIRD, or SEIRX); 5 groups, SIR-
model and its SEIR modification. Agent mod-
els,  artificial neural networks, time series mod-
els, regression models – both linear and non-
linear one with the «ridge» estimator of covari-
ance matrix (UM model) are not so frequent [9, 
30]. Several groups examine a situation existing 
in a particular US state. Also there are several 
foreign researchers who are trying to model 
COVID-19 dynamics in Russia [5, 31]. 

Our research goal was to build a linear 
multiple regression model that could give 

grounds for estimating COVID-19 mortality in 
a specific region and give a point prediction for 
it at an initial stage in EP. It can also be used to 
provide better substantiation for how to allocate 
certain resources available to public healthcare 
organizations in RF regions. 

Data and methods. The model was built as 
per data on prevalence of active SARS-CoV-2 
carriers at an initial stage in EP development in a 
specific region as well as with taking into ac-
count how well hospitals in it were provided 
with resources or necessary equipment. First we 
created a table containing data on «objects and 
variables» where objects were multi-dimensional 
observations (or p-dimensional vectors) col-
lected in n = 40 RF regions, and initial variables 
were p = 7 parameters. Two out of them change 
every day, namely COVID-19-related mortality 
rate among population and a ratio between active 
virus carriers and average population number in 
a region over 2019, in other words, their preva-
lence («factor» or «exogenous variable» X1 )1 
[32]. The rest five indicators were taken from 
Rosstat2 data collected over 2018 and 2019, re-
search works by Yu. Apukhtina and S. Zobova, 
and from an article by A.A. Sokolov [33, 34]. 
They described how well regional hospitals were 
equipped with: X2 (artificial lung ventilation de-
vices in reanimation, 2019) as per 105 people; X3 
(doctors with sanitary and anti-epidemics spe-
cialties, 2018) per 105 people; as well as infec-
tious disease doctors (2019), nurses (2018), 
excluding obstetrician nurses; and beds for 
contagious patients with communicable dis-
eases (2019). 

To substantiate our selecting these vari-
ables, let us note that there were factors influ-
encing lethality during EP listed in several re-
search works [3]. They included a situation in 
public healthcare in a period prior to EP as well 
as quality and availability of medical aid. Vari-
ables X2, X3… reflect it partially. A lot of them 
are taken into account in decision-making in 
foreign countries [13]. Thus, specialists in a 
university in Germany developed CoronaVIS   
system for monitoring over resources available 
to hospitals in the country, namely, number of 

__________________________ 
 
1 Russian statistical  yearbook. 2019. Rosstat. M., 2019, 708 p. (in Russian). 
2 Public healthcare in the RF. Supplement to the collection (data as per RF regions). Rosstat, 2019. Available at: 

https://rosstat.gov.ru/folder/210/document/13218 (06.08.2020) (in Russian). 
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beds and devices for oxygen therapy [35]. After 
an online inquiry has been made, one can in-
stantly see a map of a given territory with actual 
data on how many beds are occupied and how 
significant is load on artificial lung ventilation 
devices in a specific hospital (its coordinates 
also available); there are also diagrams showing 
loads on the nearest hospitals over a day. It al-
lows avoiding «bottlenecks» in delivering a pa-
tient to a hospital as we’ll as optimizing their 
distribution over different hospitals. The IHME 
institute at Washington University developed 
models for predicting frequency of patients’ 
deaths as well as number of occupied hospitals 
beds and ALV devices [30, 36]. Experts from a 
college in New York together with scientists 
from three universities created a calculator work-
ing within Excel; it allows estimating loads oc-
curring due to patients with COVID-19, and one 
can see availability of beds in hospitals and loads 
on ALV devices in them in an electronic table. 
As a result, there is a model showing loads on 
infectious and reanimation departments in hospi-
tals in a specific region taking into account a 
number of occupied beds, both ordinary ones 
and those aimed at intensive care [37].  

Preliminarily all the above mentioned vari-
ables that described availability of necessary 
resources to hospitals (infectious disease doc-
tors, nurses, and beds for patients with commu-
nicable diseases) were turned into a new one as 
per method of principal components. And here 
a slight modification was used; it was previ-
ously suggested by S.A. Aivazian [38, 39]. An 
algorithm used to calculate this variable given 
here as (X4)* included several steps. First, each 
variable (a parameter) maps into [0, 10] seg-
ment where 10 corresponded to the maximum 
value in the training data table, and 0 to the 
minimum one. Then estimator of S covariance 
matrix including three variables was calculated. 
Then all eigenvalues  and eigenvectors of the 
matrix S  were calculated; one of the vectors set 
the weights required to calculate (X4)*  variable.  

The learning sample containing n=40 RF 
regions was obtained after excluding 3 Federal 
cities, Moscow Region, and three regions it 
had common boundaries with, as well as the 
next 11 Regions: Astrakhan, Bryansk, Volgo-
grad, Voronezh, Kaliningrad, Kemerovo, 
Murmansk, Orel, Penza, Pskov, and Rostov; 

all Autonomous Areas; Republic of Kalmykia, 
Komi Republic, Republic of Mari El , Chu-
vash Republic, several North Caucasian re-
gions and some others, as well as Altay, Kras-
nodar, and Stavropol Territories; and some re-
gions where data on mortality were not 
published in spring. Statistic data provided in 
many of them are being criticized [7]. 

As a result, we built a non-adaptive linear 
regression model 

Y = β0 + β1∙X1 + β2∙X2 + β3∙X3+ β4∙(X4)*+ ε,  (1) 

      where Y is mortality caused by COVID-19; 
X1, …, (X4)* are four «factors» outlines 

above; 
ε  shows influence exerted by neglected 

variables on Y;  
β0,…, β4 are unknown parameters esti-

mated by as per a sampling [9].  
Value of ε in the formula (1) is determined 

as random; by definition its mathematical ex-
pectation E(ε)= 0 and variance var(ε)= 2 , and 
it is unknown. Estimators for β0,…, β4 and 2  
are found as per LSP in Excel as per a training 
data table. Let us express estimators of  
β-coefficients via b0,…, b4 . The table contained 
value sets {Y, X1, X2, X3, (X4)*} for all n regions 
and those sets were included into the table with 
different counting as per t. It was assumed that 
a number of new deaths M published over a day 
t for a specific region was a random value that 
approximately had binomial distribution; and 
m, a number of active COVID-19 cases de-
tected among N people living in a region was 
interpreted as m for independent Bernulli tests 
over a set made up of N objects and M out of 
them had a property that was significant to us – 
«there was with death » [32]. As m grows, M 
value distribution gets closer to Poisson regu-
larity, however, probability of death due to 
COVID-19 Pt  in a region over a day t is not 
known precisely. To estimate it, we considered 
a sequence over 7–10 with growths in a number 
of deaths per a day t. Then, basing on binomial 
distribution, we built up a 95 % confidence in-
terval and its middle was taken as Pt estimate. 
Then we took average value P* for these esti-
mates as per a given sequence of days. A mix-
ture of Poisson distributions is known to also 
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have Poisson distribution but with different in-
tensity. As a result, when creating the training 
sampling, we selected a lag in a time series in 
such a way so that a value of P* estimate of 
probability of a COVID-death was within  
(3∙10-5, 9∙10-5), that is, it was lower than one 
death case per 1 million people. For example, 
Ulyanovsk Region was included into the table 
with data on May 11, 2020, and its value P* 
calculated over a period from May 06 to May 
17, 2020, is equal to 0.000049.  Follow there 
are two comments.  

Note 1. As 3 factor variables X2, X3 and 
(X4)* that describe availability of resources to 
hospitals do not change (to be exact, we do not 
have any data on their changes available to 
us), the expression (1) can be given for each j-
th region as a sum of two summands. The first 
one is a constant C(j) which is by definition 
equal to b0 + b2∙X2 + b3∙X3 + b4∙(X4)* where X2, 
X3, (X4)* are variables for j–th region, j=1,…, 
n. C(j) value shows an expected mortality level 
in case there is low prevalence of active cases 
in  j–th region when X1 ≈ 0. Obviously, the 
better available and developed are resources 
required by hospitals in a region, the lower 
C(j) value is going to be. C(j) value does not 
depend on t  since ultimately parameters are 
estimated for (1) only once. The second sum-
mand in (1) contains a factor X1(j) which de-
pends on t. As a result, the model (1) is given 
as follows after unknowns β0,…,β4 have been 
estimated:  

Y(j) = C(j) +b1∙X1(j),                (2) 

where Y(j) is COVID-related mortality 
per 1 million people; 

X1 = X1(j) is prevalence of active cases 
with SARS-CoV-2 calculated per 104 people 
in j-th region. 

Index t is omitted are here in order to make 
the formulation simpler. The formula (2) can be 
easily used to daily estimate Y. To do that, we 
should take some data from a spreadsheet lo-
cated on the official web-site on coronavirus for 
a day t; these data are overall number of in-
fected (I), deceased (D), recovered (R); then we 
have to find X1= 10∙[I – (R+D)]/N where N is 
population number taken from Table 2; the next 

step is to put X1 into (2) with using LSP-esti-
mator b1 for β1 from (1) [32]. 

Note 2. However, if there was a change in 
one of variables X2, X3 and (X4)*  in i-th region, 
and a user has such information, then he (or 
she) should use the formula (1) instead of (2) 
with estimates of b0,…, b4  instead of β0,…, β4  
(Table 1). 

As a result, we detected LSP-estimates 
b0 , …,b4 for parameters (1) in early June as per 
the regions sampling given above; they were 
equal to 4.6721, 0.4494, −0.04774, −0.05668, 
−0.3308;   estimate was equal to 0.03474. 
Significance for each factor and a free member 
was lower than 0.001 when calculated via 
«Data analysis package» in Excel menu. De-
termination coefficient R2 adjusted for lack of 
bias turned out to be higher than 95 % and it 
was partially due to peculiarities related to 
creation of a training sampling. Regression 
residuals by formula (2) were distributed ap-
proximately-normally. Their normality was 
tested with d-statistics that has been described 
by L.N. Bolshev and N.V. Smirnov [40]. It is 
calculated as an average value of absolute de-
viation found as per n observations for the re-
siduals which is taken in a ratio to a root from 
sample variance. This statistics is distributed 
approximately normally with the parameters 
E(d), var(d) according to formulas given in the 
book [40]. Figure values for statistics of d cri-
terion and its parameters when calculated as 
per the regression residuals in (2) and the sam-
pling n = 40 turned out to be the following: 
d = 0.7954, E(d) = 0.8029, (var(d))0.5 = 0.0324; 
therefore, a hypothesis on normality is not re-
jected since d ≈ E(d), and deviation from E(d) 
is lower than ¼ of a standard for this statistics. 

Results and discussion. First, let’s adjust 
Table 1 to Note 2 outlined above. A decrease in 
Y value combined with growth in X2 is given for 
3 regions in it. We should note that «Aventa-M» 
ALV device which is considered to be rather 
cheap costs nearby 1.8 million rubles. 

Instead of actual ALV devices number in 
regions available on a day t (Table 1), we took 
their analogue quantity required as per state 
standards and calculated X2 for both cases taking 
data provided by Rosstat1 into account [33, 34]. 
Then, having put X2 into the formula (1) and
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T a b l e  1  
Changes in Y occurring due to better provisions of regions with ALV devices 

RF region ALV devices, number Ministry standard Improvement in X2 Decrease in Y t 
Voronezh Region 348 860 15 → 37 2.43 → 1.38 24.04 
Tver Region 118 527 9.24 → 41.3 4.7 → 3.84 26.04 
Rostov Region 643 1521 15.3 → 35 4.5 → 3.57 05.05 

T a b l e  2  
Calculation of constant C(j) and mean absolute percentage error  δ 

Region С(j) from (2) N(j),thousand 
people1 Interval as per t Error δ (%), 

from (3) Note 

Republic of  Karelia 1.060 620.3 06.05–05.07 5.0 (2.9) 0... +1 
Republic of Crimea 1.163 1912.8 27.05–02.06  6.2 (2.2) 0 
Republic of Tatarstan 2.164 3896.4 30.05–08.07  4.5 (3.9) 0 
Arkhangelsk Region 0.120 1149.6 02.06–09.06  3.3 (2.3) 0 
Vologda Region 2.074 1172.2 15.05–19.05 5.2 (3.2) + 1 
Kurgan Region 3.191 840.1 15.05–02.07 5.3 (3.0) + 1… +3 
Lipetsk Region 1.333 1147.1 03.06–14.06 2.3 (1.6) + 1 
Orenburg Region 0.901 1970.4 04.05–25.05 5.6 (2.7) 0 
Ryazan Region 1.541 1117.8 04.06–16.06 3.5 (2.0) + 4 
Tambov Region 1.970 1024.7 27.05–14.06 3.0 (2.3) + 2 
Ulyanovsk Region 1.529 1242.5 07.05–01.06 3.5 (2.2) + 1 
Chelyabinsk Region 2.10 3484.4 18.05–27.05 1.0 (0.6) +7…0  

 

having preliminarily replaced β0,…, β4  with 
b0,…, b4  estimators, we estimated a probable de-
crease in mortality Y at a moment  t  due to 
growth in  X2 . As we can see from Column 5 and 
calculation made as per the model, a significant 
decrease in Y  is expected, from 22 % to 75 %. 

The model as per the formula (1) with 
b0, …, b4, estimators or the formula (2) can 
provide satisfactory precision in daily estimates 
of mortality caused by COVID-19 in certain 
regions, Table 2 contains data for 12 regions 
and precision achieved for them as per a se-
quence of days taken from a time interval as per 
t. Several regions such as Republic of Karelia, 
Tambov Region and Kurgan Region were not 
included into training sampling. All the calcula-
tions in Table 2 are made as per the formula (2) 
with a focus on a period of time starting from 
the second half of May and finishing in July. 
Column 5 in Table 2 contains mean percentage 
error (MRPE) was taken modulo: 







K

t t

tt

Y
YY

K 1
*

*100 ,                   (3) 

which is calculated when Y estimates ob-
tained as per the formula (2) are compared 

with its smoothed true value *
tY (%). The calcu-

lation was made as per K days taken from an 
interval shown in Column 4, Table 2. 

Sample standard deviation found out of the 
said sequence consisting of K days is given in 
Column 5, Table 2. At the t-step in this calcula-
tion Yt estimate as per the formula (2) was 
compared with a smooth value *

tY  (with its 
probable preliminary correction according to 
Column 6, Table 2; but if there was «0», then 
data [32] were not changed). «Upward» ad-
justment in COVID-19 mortality parameter is 
quite justified in certain regions; therefore, if 
Column «Note» contains a figure different from 
0, it means a number of deaths added to initial 
data [4–7, 32, 41]. The series of graphs shows 
dynamics of this mortality in regions built up 
on data provided by the information center at 
the RF Public Healthcare Ministry; the graphs 
are given in comparison with similar ones taken 
from the official web-site on issues related to 
coronavirus [32, 41]. They are identical for 31 
RF regions; 6 regions provide data with a cer-
tain lag; 19 regions sometimes understate cer-
tain data in comparison with an investigation 
performed by «Mediazona» Web-site; 29 re-
gions provide data that make the graphs for 



V.S. Stepanov 

Health Risk Analysis. 2020. no. 4 20 

them to be significantly different in many time 
counts. Values for δ similar to those given in 
Table 2 can be obtained for the remaining al-
most 30 regions for a time period «April – the 
first half of May» (they were included into the 
training data with earlier counting as per t). 

This model allows obtaining precise data in 
Column 5, Table 2, provided that estimate of a 
death probability P* has values similar to those 
from the training data. For example, in Uly-
anovsk Region estimate P* was equal to 0.00049 
for a time series May 06 – May 17 (taking into 
account data given in Column 6, Table 2); and it 
was equal to approximately 0.0004 for a time 
series May 18 – June 02 for which a prediction 
as per the formula (2) was performed. 

Let us dwell on results obtained for cer-
tain regions in greater detail. They were ob-
tained as per the formula (2) for different time 
series t; graphs are given in Figures 1–4. 

Y-axis in each graph shows mortality in j-
th region Y. This rates is calculates as a total 
number of deaths per 1 million people. Figure 1 
shows graphs obtained for Republic of Tatar-
stan. A broken line is a graph built as per the for-
mula (2) for a day t  form a time series (May 27, 
July 07); a solid line shows actual mortality1 [32]. 

Then, Figure 2 shows graphs for Ark-
hangelsk Region1. A solid line shows smooth 
actual data; a dotted line is an exponent ad-
justed to Y; a broken line is a graph built as per 
the formula (2) [32]. 

The next Figure (3) shows graphs for Li-
petsk Region. A broken line with dots is a 
graph built as per the formula (2). Values for a 
stepwise graphs were calculated as follows: we 
took a number of deaths, then, starting from 
April 17, we added one more death to them 
that probably remained unaccounted, then the 
sum was multiplied by 103 and divided by 
N(j) = 1,147.1 (it is given as «+1» in Column 6, 
Table 2)1 [32]. A smooth curve given in Figure 
3 is MA or «moving average» and it is calcu-
lated as per points in the stepwise graph via a 
moving centered 7-day window.  

Figure 4 shows graphs for Republic of Ka-
relia for a time period April 16 – July 29. Dark-
colored dots are obtained via putting Xk values 
into the formula (2). An exponential trend 
shown as a thin line is adjusted to these dots.  

 
Figure 1. Dynamics in Y : Republic of Tatarstan 

 
Figure 2. Dynamics in Y : Arkhangelsk Region 

 
Figure 3. Dynamics in Y : Lipetsk Region 

 
Figure 4. Dynamics in mortality Y in Republic of 

Karelia and its estimate by (2) 

The constant in the formula is 1.055 and it 
corresponds to almost zero prevalence of ac-
tive COVID-19 cases when C(j) = 1.06 from 
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Table 2. A stepwise line (broken one) shows 
official mortality; a similar solid line shows Y 
adjusted as per Column 6 in Table 2. They are 
a bit shifted in order to avoid merging. Starting 
from June 11 we added one more death case 
when calculating an adjusted line which was 
probably accounted with a certain lag. This 
additional death case was reported by the re-
gional authorities and it can be seen on «Medi-
azona» repository [7]. Shifts as per t in publi-
cations about death cases are also reported in 
other sources [6, 7, 26, 41]. We can try to logi-
cally substantiate this assumption via analyz-
ing mortality in three regions that have a 
common border with Republic of Karelia, 
namely Leningrad Region, Vologda Region, 
and Arkhangelsk Region. And mortality here 
should be examined with close X1, values that 
were detected in Republic of Karelia during 
the second decade of June (between values 6.8 
and 9). As it can be seen from the graphs given 
in Figure 4, the model built with the formulas 
(1) and (2) gives quite reliable estimates of 
mortality in a time period June 06, … July 05 
which is a bit adjusted «upward» (if we draw a 
line which is smoothed as per moving average 
instead of a stepwise one). The same was done 

for Kurgan Region. Approximately similar ac-
tions are performed by analytics in some or-
ganizations when they adjust data on mortality 
[5, 7], for example, in Moscow office of «Data 
Insight» company where specialists working at 
the research department are building up an in-
dex showing mortality underestimation [5]. 

Conclusion. Thus, we have built up a re-
gression model and tested its precision. The 
model relates mortality in a given region with 
prevalence of active COVID-19 cases as well 
as with provision of hospitals with several 
necessary resources. It can be useful at initial 
stages in EP development when there are rare 
and insignificant growths in mortality in a re-
gion over 7–10 days and they have got Poisson 
distribution. Besides, the model can be useful 
for building up SEIR, SIRD, and some other 
models at a stage when mortality-related pa-
rameters are selected for them. It can also be 
applied when distributing resources available 
to public healthcare organizations.  
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