УДК 61.616.9

# ПОСТВАКЦИНАЛЬНЫЙ ИММУНИТЕТ К ДИФТЕРИИ, КОРИ, СТОЛБНЯКУ, КОКЛЮШУ У ДЕТЕЙ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ХИМИЧЕСКИХ ФАКТОРОВ РИСКА СРЕДЫ ОБИТАНИЯ

## О.Ю. Устинова, В.Г. Макарова, О.В. Долгих

Федеральное бюджетное учреждение науки «Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения», Россия, 614045, г. Пермь, ул. Монастырская, д. 82

Проведена оценка состояния поствакцинального иммунитета к дифтерии, кори, столбняку, коклюшу у детей с повышенным содержанием химических токсикантов, обусловленным внешнесредовым воздействием. Установлено, что содержание поствакцинальных антител у данной категории детей достоверно ниже показателей детского населения, проживающего в условиях санитарно-гигиенического благополучия среды обитания, а нарушения формирования поствакцинального иммунитета встречаются в 1,5–2,4 раза чаще. Установлена достоверная связь снижения содержания специфических поствакцинальных антител с увеличением в крови концентрации свинца, хрома, марганца и О-крезола.

**Ключевые слова:** дети, поствакцинальный иммунитет, дифтерия, коклюш, корь, столбняк, внешнесредовое воздействие, химические факторы.

Введение плановой вакцинопрофилактики позволило существенно снизить во многих странах мира заболеваемость целым рядом инфекций. Благодаря вакцинопрофилактике в мире ежегодно предотвращается около 3 млн смертей от коклюша, кори, столбняка, дифтерии [3, 13]. В то же время техногенное загрязнение среды обитания снижает иммунологическую эффективность вакцинопрофилактики у детского населения и может способствовать развитию эпидемического неблагополучия [1, 4, 5, 6, 7, 8, 17].

Ретроспективный анализ эпидемии дифтерии (1993–1996 гг.) показал, что среди заболевших значительный удельный вес составляли привитые лица (74–81%), что свидетельствует о недостаточном уровне поствакцинального иммунитета у отдельных категорий населения [1, 12]. Среди взрослых, заболевших диф-

терией, процент привитых достигает 65—70 %, а среди детей — более 80 % [11]. Аналогичная картина прослеживается и в отношении коклюша [9]. Продолжают регистрироваться случаи заболевания корью у привитых, в том числе у ревакцинированных [13]. Среди всех заболевших, привитые живой коревой вакциной составляют до 20,5 %, в том числе получившие две дозы вакцины — 13,2 %. В мировой практике описаны случаи заболевания столбняком у привитых [13].

Исследованиями ряда авторов установлено, что техногенное загрязнения среды обитания является одним из ведущих факторов риска формирования у 35–51,9 % детей низкого уровня поствакцинальных антител [8, 14, 15]. На территориях санитарно-гигиенического неблагополучия число детей с максимальным содержанием противодифтерийных антител в 7–8 раз ниже

<sup>©</sup> Устинова О.Ю., Макарова В.Г., Долгих О.В., 2013

Устинова Ольга Юрьевна (Пермь, Россия) — доктор медицинских наук, профессор, заместитель директора по лечебной работе ФБУН «Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения» (e-mail: ustinova@fcrisk.ru; тел.: 8(342)236-32-64).

**Макарова Венера Галимзяновна** (Пермь, Россия) – врач аллерголог-иммунолог ФБУН «Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения» (e-mail: root@fcrisk.ru; тел.: 8(342)236-32-64).

Долгих Олег Владимирович (Пермь, Россия) – доктор медицинских наук, профессор, заведующий отделом иммунобиологических методов диагностики ФБУН «Федеральный научный центр медико-профилактических технологий управления рисками здоровью населения» (e-mail: oleg@fcrisk.ru; тел.: 8(342)236-39-30).

аналогичного показателя у лиц, проживающих в относительно благоприятных условиях [9, 14, 16]. По данным литературы у детей 10–14 лет, проживающих на территориях техногенного загрязнения, установлено отсутствие защитных уровней антител к дифтерии в 20–25 % случаев, кори – в 28–37 %, коклюша – у 90 % обследованных [10, 18, 20].

Согласно результатам проведенных исследований загрязнение объектов среды обитания химическими токсикантами техногенного происхождения (свинец, марганец, хром, фенол, ароматические углеводороды) на уровне 1,01-5,0 ПДКс.с формирует повышенное их содержание в крови, в 1,5-5,3 раза превышающее референтный уровень [4, 5, 6, 7]. Повышенное содержание в биологических средах этих токсичных соединений, обусловленное различными путями их поступления в организм (водный, аэрогенный, пищевой и др.), формирует состояние вторичного иммунодефицита [4, 6, 11]. У детей с контаминацией биосред перечисленными токсикантами выше референсных/фоновых уровней установлено снижение относительно физиологической нормы содержания иммунокомпетентных клеток, активно участвующих в формировании поствакцинального иммунитета: абсолютного и относительного содержания зрелых Т-лимфоцитов и их субпопуляций (СД4+, CД8+),количества киллерных (CD16+CD56+), антителопродуцирующих (CD19+) клеток и угнетение медиаторов T<sub>x</sub>1 типа, на фоне одновременного повышения CD25<sup>+</sup>, CD95<sup>+</sup>, общей и специфической сенсибилизации (IgE), а также продукции цитокинов T<sub>x</sub>2 типа (IL-4, IL-6) [2,14,16]. Снижение иммунологической реактивности сопровождается угнетением неспецифической резистентности организма (снижение абсолютного содержания функциональной активности фагоцитов на фоне дефицита IgG и IgA), что препятствуют формированию полноценного поствакцинального иммунитета [2, 8, 17].

Используемые в настоящее время отечественные диагностические системы для качественной и количественной оценки поствакцинального иммунитета, основанные на реакции агглютинации или пассивной гемагглютинации, не дают адекватного представления о направленности специфических антител к различным компонентам возбудителя и о реальной протективной активности этих антител [19]. Наиболее полно этим требованиям отвечает метод ИФА, основными преимуществами которого являются: высокая чувствительность и специфичность, возможность одновременного исследования большого количества проб с определением специфических антител различных классов - JgA, JgM, JgG, JgE, объективная оценка результатов, простота постановки и возможность использования внутреннего контроля.

Целью исследования являлось изучение связи нарушений поствакцинального иммунитета к дифтерии, кори, столбняку, коклюшу у детей с повышенным содержанием в крови химических токсикантов, обусловленным внешнесредовым воздействием.

Объектом исследования являлись 276 детей в возрасте 4-6 лет, у которых в соответствии с «Национальным календарем прививок» была выполнена плановая профилактика дифтерии, коклюша и столбняка вакциной «АКДС» (базовая вакцинация в возрасте 3, 4, 5 и 6 месяцев жизни и первая ревакцинация в 18 месяцев) и против кори вакциной «ЖКВ», (вакцинация в 12 месяцев, ревакцинация – в возрасте 6 лет) и не имевших поствакцинальных реакций. 219 детей (группа наблюдения) проживали на территории крупного промышленного центра с многопрофильным характером промышленного производства, 57 детей (группа сравнения) - на территории относительного санитарно-гигиенического благополучия. Группы были сопоставимы по гендерному составу и социально-экономическому статусу семей. Из исследования были исключены дети с патологией, сопровождающейся развитием иммунных нарушений.

Гигиеническая оценка воздействия на атмосферный воздух в зонах проживания детей проводилась на основании анализа количественного состава выбросов промышленных предприятий по данным 2-ТПвоздух. Для оценки качества атмосферного воздуха были использованы официальные данные мониторинговых исследований Росгидромета и результаты собственных натурных исследований качества атмосферного воздуха в зонах экспозиции.

Оценка риска развития у детей нарушений со стороны иммунной системы осуществлялась по стандартизованной методике в соответствии с «Руководством по оценке риска для здоровья населения при воздействии химических веществ, загрязняющих окружающую среду» (Р 2.1.10.1920-04).

Химико-аналитические исследования содержания металлов (марганец, свинец, хром) в биосубстратах (кровь) и атмосферном воздухе проводилась методом атомноабсорбционной спектрофотометрии спектрофотометре PERKIN-ELMER-3110 (США) (регистрационный номер в Государственном реестре 14427-95) с атомизацией в пламени и масс-спектрометре с индуктивно-связанной плазмой ICP-MS фирмы «Agilent 7500сх» (США) (регистрационный номер в Государственном реестре 24863-08). Исследование содержания фенола и О-крезола в биосубстратах (кровь) и атмосферном воздухе проводилось методом капиллярной газовой хроматографии и парафазного анализа в соответствии с методическими указаниями (МУК 4.1.763-4.1.779-99; МУК 4.1.2102-4.1.2116-06) с использованием газового хроматографа (модель 7890А, регистрационный номер в Государственном реестре 15118-07) (США) и аппаратно-программного комплекса «Хроматэк-Кристалл-5000» (№ ФСР 2009/04091, ТУ 9443-004-12908609-99).

Оценка содержания поствакцинальных антител осуществлялась методом иммуноферментного анализа на полуавтоматическом иммуноанализаторе «ELx808» с использованием:

- а) тест-системы «Anti-Diphtheria Toxoid ELISA», предназначенной для количественного определения in vitro антител класса IgG (а также классов IgM и IgA) к дифтерийному анатоксину (Diphtheria тохоіd) в сыворотке крови, откалиброванной в международных единицах (МЕд) с использованием международной референсной сыворотки NIBSC 91|534 (National Institute for Biological Standards Control, Hertfordshire, England);
- б) тест-системы «RIDASCREEN Bordetella IgG ELISA», предназначенной для количественного in vitro определения антител класса IgG к коклюшному анатоксину (Bordetella тохоіd) в сыворотке крови;
- в) тест-системы «Anti-Measles Viruses ELISA (IgG)», предназначенной для количественного in vitro определения антител класса IgG (а также классов IgM и IgA) к вирусу кори в сыворотке крови;
- г) тест-системы «Anti-Tetanus Toxoid ELISA», предназначенной для количественного in vitro определения антител класса IgG к столбнячному анатоксину (Tetanus тохоіd) в сыворотке крови, откалиброванной в международных единицах (МЕд) с использованием международной референсной сыворотки (I Международный стандарт антител к столбняку, Human NIBSC Code TE-3).

Оценка состояния поствакцинального иммунитета к дифтерии, коклюшу и столбняку проведена через три, четыре и пять лет после первой ревакцинации АКДС; к возбудителю кори — через три и четыре года после вакцинации и один год — после ревакцинации ЖКВ на основании исследования содержания циркулирующих специфических поствакцинальных антител.

Оценка межгрупповых различий исследуемых показателей проводилась с использованием стандартных методов параметрической статистики. На основе логистических моделей проведена оценка зависимости нарушений формирования поствакцинального иммунитета (содержание поствакцинальных антител ниже протективного уровня) от повышенного (относительно референсных/фоновых концентраций) содержания в крови химических токсикантов, обусловленного внешнесредовым воздействием. В рамках моделирования по критерию отношения шансов была выполнена оценка недействующих уровней марганца, свинца, хрома и о-крезола на формирование поствакцинального иммунитета к дифтерии, столбняку, коклюшу и кори.

Получены следующие результаты. На территории проживания детей группы наблюдения (крупный промышленный центр с многопрофильным производством) ежегодно в атмосферный воздух от стационарных источников поступает более 900 т загрязняющих веществ (в том числе соединений хрома, марганца, свинца, фенола и крезолов), среди которых вещества 1–3-х классов опасности составляют более 77 % (759,6 т/год).

Натурные исследования атмосферного воздуха в зонах экспозиции позволили идентифицировать в отобранных пробах хром, свинец, марганец – в концентрациях до 1,5 ПДК $_{\rm c.c.}$ , крезолы и фенол – до 2,3–4,0 ПДК $_{\rm c.c.}$ 

На территории проживания детей группы сравнения (поселок городского типа) качество атмосферного воздуха соответствовало гигиеническим нормативам как по данным мониторинговых наблюдений, так и по результатам натурных исследований.

В ходе исследований, проведенных на территории проживания детей группы наблюдения, установлен неприемлемый риск развития иммунных нарушений (*HI*>1,0) при ингаляционном поступлении исследуемых соединений (хром, марганец, свинец). Результаты эпидемиологических исследований выявили причинноследственную связь между изучаемыми химическими факторами риска и возникновением иммунных нарушений (ОШ = = 2,56; ДИ = 1,05-6,26).

При оценке риска развития иммунных нарушений, связанных с воздействием химических факторов среды обитания, проведенной на территории проживания детей группы сравнения, установлен приемлемый уровень риска (HI<1,0).

В результате химико-аналитических исследований крови детей группы наблюдения установлено, что содержание марганца  $(0.021\pm0.003 \text{ мг/дм}^3)$ , свинца  $(0.131\pm0.013)$  $M\Gamma/дM^3$ ), хрома (0,0191± 0,0035  $M\Gamma/дM^3$ ), фенола  $(0.0494\pm0.0071 \text{ мг/дм}^3)$  и о-крезола  $(0.0143\pm0.0046 \text{ мг/дм}^3)$  достоверно (p == 0,01-0,0001) в 1,4-4,0 раза превышало референтные/фоновые уровни. Кроме того, содержание данных химических веществ было в 1,2-4,9 раза выше аналогичных показателей группы сравнения (марганец - $0.013\pm0.0024$  мг/дм<sup>3</sup>, свинец  $-0.109\pm0.009$  $M\Gamma/дM^3$ , хром – 0,0107±0,0020  $M\Gamma/дM^3$ , фенол –  $0.0087\pm0.0004$  мг/дм<sup>3</sup>, о-крезол –  $0,0033\pm0,0012$  мг/дм<sup>3</sup>; p = 0,03-0,0001) (табл. 1).

Таблица 1 Содержание химических веществ в крови детей, проживающих в различных условиях санитарно-гигиенического благополучия среды обитания, мг/дм $^3$ 

| Вещество | Группа наблюдения | Группа сравнения | р      |
|----------|-------------------|------------------|--------|
| Марганец | 0,021±0,003       | 0,013±0,0024     | 0,0001 |
| Свинец   | 0,131±0,013       | 0,109±0,009      | 0,006  |
| Хром     | 0,0191±0,0035     | 0,0107±0,0020    | 0,03   |
| Фенол    | 0,0494±0,0071     | 0,0087±0,0004    | 0,0001 |
| О-крезол | 0,0143±0,0046     | 0,0033±0,0012    | 0,0001 |

Примечание: p – достоверность различий группы наблюдения и группы сравнения

Анализ среднегрупповых показателей поствакцинальных содержания антител к дифтерии, столбняку, коклюшу и кори показал, что их уровень в обеих исследуемых группах в анализируемые сроки после вакцинации/первой ревакцинации соответствовал протективному. В группе наблюдения уровень поствакцинальных антител к токсину дифтерии составлял: min -0,089 Мед/мл (протективный уровень p = 0.82), 0,1-2,0Мед/мл, max 0.365 Мед/мл ( $p \le 0.001$ ), к анатоксину столбняка - min - 0,11 Мед/мл (протективный уровень – 0,01–5,0 Мед/мл,  $p \le 0.001$ ), max – 0.73 Мед/мл ( $p \le 0.001$ ), к возбудителю коклюша – min – 19,13 Ед/мл (протективный уровень – 14,0–18,0 Ед/мл, p = 0.02), max – 39,19 ( $p \le 0.001$ ), к возбудителю кори - min - 933,78 Мед/мл (протективный уровень - 200,0-275,0 Мед/мл,  $p \le 0.001$ ), max – 1126,43 Мед/мл ( $p \le 0.001$ ) (табл. 2). В то же время у детей группы наблюдения через 3 года после первой ревакцинации АКДС уровень антител к токдифтерии (0,089±0,096 Мед/мл) и анатоксину столбняка (0,11±0,09 Мед/мл) был в 4,8-10,4 раза ниже показателей группы сравнения (0,429±0,131 Мед/мл и 1,14±0,66 Мед/мл соответственно; p = 0.002...0.0001); через четыре года – в 1,4 раза ниже к возбудителю коклюша  $(30,07\pm7,69$  Ед/мл против  $43,31\pm2,0$  Ед/мл, p = 0.001) и во все исследуемые периоды содержание антител к возбудителю кори после вакцинации/ревакцинации ЖКВ было (1126,43±166,12 Мед/мл, 933,78±132,25 Mед/мл,  $1043,39\pm169,8$  Mед/мл) в 1,3-1,6 раза ниже группы сравнения (1457,87± ±142,11 Мед/мл, 1493,13±180,94 Мед/мл,  $1314,31\pm170,44$  Мед/мл; p = 0,025...0,0001) (табл. 2).

Для углубленной оценки иммунологической эффективности вакцин АКДС и ЖКВ в изучаемых группах была проанализирована частота нарушений формирования поствакцинального иммунитета (табл. 3). Результаты исследования показали, что

у 50-67 % детей группы наблюдения и 21-46 % детей группы сравнения содержание поствакцинальных антител не обеспечивапротективного уровня иммунитета к дифтерии и коклюшу, при этом частота случаев формирования у привитых детей группы наблюдения низких титров поствакцинальных антител была в 1,8-2,0 раза выше группы сравнения (p = 0.03...0.0001), в то время как нарушения противокоревого поствакцинального иммунитета в обеих группах встречались в единичных случаях (3-6 %). У всех исследованных детей содержание поствакцинальных антител к анатоксину столбняка в анализируемые сроки соответствовало протективному уровню.

В группе наблюдения в исследуемые сроки поствакцинального периода протективный уровень противодифтерийных антител имели только 33-48 % привитых детей, что достоверно в 1,5-2,0 раза сравнения (67-71 %, группы меньше p = 0.003...0.0001). Содержание поствакцинальных противококлюшных антител на протективном уровне и выше в группе наблюдения имели только 46-50 % детей, в то время как в группе сравнения таких детей было в 1,5–1,6 раза больше (70–78 %, p = 0.003...0001). В целом в группе наблюдения количество детей, имеющих низкое содержание поствакцинальных противодифтерийных антител, в 1,8-2,0 раза (p = 0.001...0.003) превышало показатель группы сравнения, а число детей с уровнем противококлюшных антител ниже протективного – в 1,5–2,4 раза (p = 0.03...0.0001) (см. табл. 3). Кроме того, в анализируемые сроки поствакцинального периода (с 3 лет до 5) число детей с содержанием противодифтерийных антител ниже протективного уровня в группе наблюдения увеличивается на 28,9 %, в то время как в группе сравнения только на 13.8 % (p = 0.03).

Таблица 2

Содержание поствакцинальных антител у детей с различным уровнем содержания в крови химических токсикантов техногенного происхождения

| Протективный<br>уровень<br>антител                    |                                                |                                  | 0,1–2,0         |                   |                 | 0,01–5,0       |               |               | 14–18           |               |                 | 200–275            |                    |                |
|-------------------------------------------------------|------------------------------------------------|----------------------------------|-----------------|-------------------|-----------------|----------------|---------------|---------------|-----------------|---------------|-----------------|--------------------|--------------------|----------------|
| Содержание антител                                    | Достоверность<br>различий группы<br>наблюдения | с защитным<br>уровнем<br>антител | 0,82            | <0,001            | <0,001          | <0,001         | <0,001        | <0,001        | 0,02            | <0,001        | <0,001          | <0,001             | <0,001             | 70.001         |
|                                                       | Достово<br>различий<br>наблю                   | с группой<br>сравнения           | 0,0001          | 0,25              | 0,71            | 0,002          | 0,83          | 0,94          | 0,62            | 0,001         | 0,76            | 0,003              | 0,0001             | 2000           |
|                                                       | Группа                                         | сравнения                        | $0,429\pm0,131$ | $0,264\pm0,154$   | $0,261\pm0,120$ | $1,14\pm0,66$  | $0.68\pm0.44$ | $0.50\pm0.22$ | $21,83\pm10,19$ | $43,31\pm2,0$ | $35,89\pm18,84$ | $1457,87\pm142,11$ | $1493,13\pm180,94$ | 131/131+170 // |
|                                                       | ,                                              | т руша наолюдения                | $0,089\pm0,016$ | $0,365\pm0,084$   | 0,289±0,089     | 0,11±0,09      | 0,73±0,19     | $0.51\pm0.17$ | 19,13±4,19      | 30,07±7,69    | 39,19±10,07     | 1126,43±166,12     | 933,78±132,25      | 10/3 20+160 8  |
| Период после последней вакцинации/ревакцинации (годы) | Достоверность                                  | различий                         | 0,79            | 0,13              | 0,83            | 0,79           | 0,13          | 0,83          | 6,79            | 0,13          | 0,83            | 0,08               | 0,83               | 0.27           |
|                                                       | Группа                                         | сравнения                        | 3,40±0,68       | 4,24±0,22         | $5,10\pm0,20$   | 3,40±0,68      | 4,24±0,22     | $5,10\pm0,20$ | $3,40\pm0,68$   | $4,24\pm0,22$ | $5,10\pm0,20$   | $1,11\pm0,17$      | 3,98±0,76          | 4 04 10 13     |
|                                                       | Группа                                         | наблюдения                       | $3,22\pm1,18$   | $4,50\pm0,26$     | $5,16\pm0,38$   | $3,22\pm1,18$  | $4,50\pm0,26$ | $5,16\pm0,38$ | $3,22\pm1,18$   | $4,50\pm0,26$ | $5,16\pm0,38$   | $0.91\pm0.15$      | $3,88\pm0,54$      | 71017          |
|                                                       | П                                              | Дифтерия                         |                 | Столбняк (Мед/мл) |                 | Коклюш (Ед/мл) |               |               | Корь (Мед/мл)   |               | (IVICAL MJI)    |                    |                    |                |

Таблица 3

Частота нарушений формирования защитного уровня поствакцинального иммунитета у детей с различным уровнем содержания в крови химических токсикантов техногенного происхождения (%)

| Достоверность<br>различий                                  | $p^2$ $p^3$           |               |           | I                           | I                            | I                           | I                           | I                            | I                           | 0,0001                      | 0,02                | 0,73                        | 0,001                   | 0,87          | I             |
|------------------------------------------------------------|-----------------------|---------------|-----------|-----------------------------|------------------------------|-----------------------------|-----------------------------|------------------------------|-----------------------------|-----------------------------|---------------------|-----------------------------|-------------------------|---------------|---------------|
|                                                            |                       |               | 0,001     | 0,44                        | 0,001                        | 1,0                         | 0,99                        | 1,0                          | 6,0                         | 0,003 0,0001                | 0,001               | 0,0001                      | _                       | 1             |               |
| Дос                                                        | ,                     | $p^{_1}$      |           | 0,003                       | 0,44                         | 0,001                       | ı                           | I                            | ı                           | 0,0001                      | 0,003               | 0,03                        | 0                       | _             | 1             |
|                                                            | Выше про-             | тективного    | уровня    | 0                           | 0                            | 0                           | 0                           | 0                            | 0                           | 71                          | 44                  | 16                          | 80                      | 94            | 100           |
| Группа сравнения                                           | Соответствует         | протективному | уровню    | 71                          | 54                           | <i>L</i> 9                  | 100                         | 100                          | 100                         | 7                           | 26                  | 57                          | 20                      | 0             | 0             |
| I                                                          | Ниже про-             | тективного    | уровня    | 29                          | 46                           | 33                          | 0                           | 0                            | 0                           | 21                          | 30                  | 27                          | 0                       | 9             | 0             |
| 13                                                         | Выше про-             | тективного    | уровня    | 2                           | 0                            | 0                           | 0                           | 1                            | 0                           | 42                          | 43                  | 18                          | 94                      | 66            | 100           |
| Группа наблюдения                                          | Соответствует         | протективному | уровню    | 46                          | 48                           | 33                          | 100                         | 66                           | 100                         | 8                           | 3                   | 32                          | 3                       | 1             | 0             |
|                                                            | Ниже про-             | тективного    | уровня    | 52                          | 52                           | <i>L</i> 9                  | 0                           | 0                            | 0                           | 09                          | 23                  | 09                          | 3                       | 0             | 0             |
| Период после последней вакцина-<br>ции/ревакцинации (годы) | Трууппа Постовериость | достоворноств | ражити    | 0,79                        | 0,13                         | 0,83                        | 0,79                        | 0,13                         | 0,83                        | 0,79                        | 0,13                | 0,83                        | 0,08                    | 0,83          | 0,34          |
|                                                            | Группа                | пруппа ,      | сравнения | $3,22\pm1,18$ $3,40\pm0,68$ | 4,24±0,22                    | $5,16\pm0,38$ $5,10\pm0,20$ | $3,22\pm1,18$ $3,40\pm0,68$ | 4,24±0,22                    | $5,16\pm0,38$ $5,10\pm0,20$ | $3,22\pm1,18$ $3,40\pm0,68$ | 4,24±0,22           | $5,16\pm0,38$ $5,10\pm0,20$ | $1,111\pm0,17$          | 3,98±0,76     | 4,94±0,12     |
| Период п<br>ции/р                                          | Группа                | наблюде-      | ния       | $3,22\pm1,18$               | Дифтерия 4,50±0,26 4,24±0,22 | $5,16\pm0,38$               | $3,22\pm1,18$               | Столбняк 4,50±0,26 4,24±0,22 | $5,16\pm0,38$               | $3,22\pm1,18$               | 4,50±0,26 4,24±0,22 | $5,16\pm0,38$               | $0.91\pm0.15$ 1,11±0,17 | $3,88\pm0,54$ | $4,84\pm0,17$ |
| Нозология                                                  |                       |               |           | Дифтерия                    |                              |                             | Столбняк                    |                              |                             | Коклюш                      |                     |                             | Корь                    |               |               |

Примечание:  $p^1$  – достоверность различий частоты формирования поствакцинального иммунитета ниже протективного уровня у детей группы наблюде $p^2$  — достоверность различий частоты встречаемости протективного уровня поствакцинальных антител у детей группы наблюдения с группой сравнения;  $p^3$  — достоверность различий частоты формирования поствакцинального иммунитета выше протективного уровня у детей группы наблюдения и группы ния и группы сравнения;

сравнения.

Изучение показателей системного иммунитета позволило установить у детей, проживающих в условиях антропогенного загрязнения среды обитания, достоверно более низкое, относительно группы сравне-

ния, абсолютное содержание лимфоцитов СД19+ и CD16+56+ (p=0,01...0,001) и сывороточного иммуноглобулина А (p=0,02) (табл. 4).

Таблица 4 Показатели системного иммунитета у детей у детей с различным уровнем содержания в крови химических токсикантов техногенного происхождения

| Показатель                           | Физиологический<br>уровень | Группа наблюдения | Группа сравнения | p     |
|--------------------------------------|----------------------------|-------------------|------------------|-------|
| Процент фагоцитоза (%)               | 35–60                      | 56,0±2,5          | 56,5±4,5         | 0,92  |
| Фагоцитарное число (у.е.)            | 0,8-1,2                    | 1,05±0,08         | 1,0±0,09         | 0,40  |
| Фагоцитарный индекс (у.е.)           | 1,5–2,0                    | 1,85±0,08         | 1,70±0,12        | 0,06  |
| Абсолютный фагоцитоз $(10^9/дм^3)$   | 0,964-2,988                | 2,541±0,247       | 2,170±0,323      | 0,07  |
| СD3+-лимфоциты отн. (%)              | 55-84                      | 67,5±2,0          | 66,5±6,5         | 0,89  |
| $CD3+-$ лимфоциты абс. $(10^9/дм^3)$ | 0,690-2,540                | 2,037±0,213       | 2,160±0,276      | 0,48  |
| CD3+CD4+-лимфоциты отн. (%)          | 31–60                      | 34,5±2,5          | $38,0\pm4,0$     | 0,64  |
| CD3+CD4+-лимфоциты абс.              |                            |                   |                  |       |
| $(10^9/дм^3)$                        | 0,410-1,590                | 1,047±0,132       | 1,233±0,166      | 0,08  |
| CD3+CD8+-лимфоциты отн. (%)          | 13–41                      | 25,5±2,0          | 23,0±3,0         | 0,71  |
| CD3+CD8+-лимфоциты абс.              |                            |                   |                  |       |
| $(10^9/дм^3)$                        | 0,190-1,140                | 0,773±0,089       | 0,757±0,112      | 0,82  |
| CD19+-лимфоциты отн. (%)             | 6–25                       | 13,5±1,5          | 17,0±2,5         | 0,52  |
| CD19+-лимфоциты абс. (109/дм3)       | 0,090-0,660                | $0,417\pm0,065$   | $0,545\pm0,079$  | 0,01  |
| CD16+56+-лимфоциты отн. (%)          | 5–27                       | 15,5±2,5          | $8,0\pm1,5$      | 0,16  |
| CD16+56+-лимфоциты абс.              |                            |                   |                  |       |
| $(10^9/дм^3)$                        | 0,090-0,590                | $0,463\pm0,084$   | $0,253\pm0,05$   | 0,001 |
| CD3+CD25+-лимфоциты отн. (%)         | 5,5                        | 4,5±0,5           | $4,5\pm0,5$      | 1,0   |
| CD3+CD25+-лимфоциты абс.             |                            |                   |                  |       |
| $(10^9/\text{дм}^3)$                 | 0,155                      | 0,136±0,023       | $0,154\pm0,021$  | 0,26  |
| <b>IgA</b> (г/дм³)                   | 2,0-2,8                    | 1,14±0,07         | 1,29±0,11        | 0,02  |
| IgM (г/дм <sup>3</sup> )             | 1,0–1,6                    | 1,09±0,04         | $1,17\pm0,09$    | 0,1   |
| IgG (г/дм <sup>3</sup> )             | 12,0–16,0                  | 10,01±0,33        | 10,25±0,73       | 0,35  |

Примечание: p — достоверность различий показателей системного иммунитета у детей группы наблюдения и группы сравнения.

Анализ показателя отношения шансов изменения уровня поствакцинального специфического иммунитета при различном уровне токсикантной нагрузки позволил установить достоверную связь снижения содержания JgG к дифтерийному анатоксину при увеличении в крови концентрации свинца (недействующий уровень – 0.04 мг/дм³;  $R_2 = 0.09$ ;  $p \le 0.0001$ ) и

О-крезола (недействующий уровень –  $0.0 \text{ мг/дм}^3$ ;  $R_2 = 0.48$ ;  $p \le 0.0001$ ) (рис. 1, 2).

Кроме того, установлено достоверное снижение содержания JgG к возбудителю коклюша при увеличении в крови концентрации хрома (недействующий уровень –  $0.004 \text{ мг/дм}^3$ ;  $R_2 = 0.76$ ;  $p \le 0.0001$ ) (рис. 3), марганца (недействующий уровень –  $0.011 \text{ мг/дм}^3$ ;  $R_2 = 0.80$ ;  $p \le 0.0001$ ) (рис. 4).

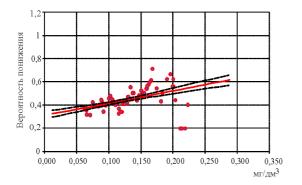



Рис. 1. Связь снижения содержания поствакцинального JgG к дифтерийному анатоксину при увеличении в крови концентрации свинца

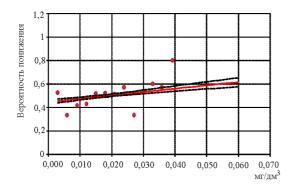
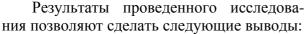




Рис. 3. Связь снижения содержания поствакцинального JgG к возбудителю коклюша при увеличении в крови концентрации хрома



- 1. У детей с повышенным содержанием в крови химических токсикантов (марганец, свинец, хром, фенол, О-крезол), обусловленным внешнесредовым воздействием, через 3—5 лет после вакцинации/первой ревакцинации вакцинами АКДС и ЖКВ содержание поствакцинальных антител в 1,3—10,4 раза ниже относительно показателей детей, проживающих в условиях санитарно-гигиенического благополучия среды обитания.
- 2. Нарушения формирования поствакцинального иммунитета (уровень поствакцинальных антител ниже протективного) у детей с повышенным содержанием в крови марганца, свинца, хрома, фенола, О-крезола встречаются в 1,5–2,4 раза чаще относи-

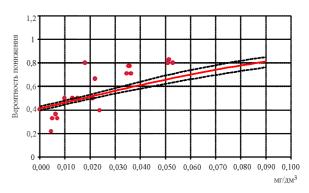



Рис. 2. Связь снижения содержания поствакцинального JgG к дифтерийному анатоксину при увеличении в крови концентрации О-крезола

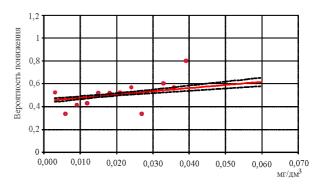



Рис. 4. Связь снижения содержания поствакцинального JgG к возбудителю коклюша при увеличении в крови концентрации марганца

тельно детей с содержанием химических токсикантов на уровне референсных/фоновых значений.

- 3. Абсолютное содержание антителопродуцирующих (CD19+) клеток у детей с повышенным содержанием в крови химических токсикантов техногенного происхождения достоверно ниже показателя у детей, проживающих в условиях санитарно-гигиенического благополучия среды обитания.
- 4. Установлена достоверная связь снижения содержания специфических поствакцинальных антител при увеличении в крови концентрации свинца, хрома, марганца и О-крезола.

#### Список литературы

- 1. Брико Н.И. Политика и механизмы принятия решений в области иммунопрофилактики в РФ: доклад на III ежегодном Всерос. конгрессе по инфекционным болезням [Электронный ресурс]. М., 2011. URL: http://www.congress-infection.ru/archiv.htm.
- 2. Васнева Ж.П., Беляева Л.В., Шапошникова С.В. Напряженность поствакцинального гуморального иммунитета у детей // Организационные, диагностические и лечебные аспекты деятельности учреждений здравоохранения: сб. науч. тр. Воронеж, 2005. С. 187–190.
- 3. Зверев В.В., Юминова Н.В. Эффективность вакцинации против кори и эпидемического паротита  $/\!/$  Вакцинация. Новости вакцинопрофилактики. -2000. -№ 11 (5). -ℂ. 10–11.
- 4. Влияние полиметаллических загрязнений объектов окружающей среды на изменение микроэлементного состава биосред у детей / Н.В. Зайцева, Т.С. Уланова, Л.В. Плахова, Г.Н. Суетина // Гигиена и санитария. -2004. -№ 4. -C. 11.
- 5. Зайцева Н.В., Землянова М.А., Кирьянов Д.А. Оценка адаптационно-приспособительных реакций у детей в условиях хронического воздействия химических факторов // Экология человека. 2005. № 9. С. 29–31.
- 6. Обоснование максимально недействующей концентрации формальдегида в крови детей, проживающих на территориях с различной антропогенной нагрузкой / Н.В. Зайцева, Т.С. Уланова, О.В. Долгих, Т.В. Карнажицкая // Пермский медицинский журнал. 2010. Т. 27, № 1. С. 101–104.
- 7. Зайцева Н.В., Устинова О.Ю., Аминова А.И. Гигиенические аспекты нарушения здоровья детей при воздействии химических факторов среды обитания: руководство / под ред. Н.В. Зайцевой. Пермь: Книжный формат, 2011. 489 с.
- 8. Ильина С.В. Влияние техногенного загрязнения окружающей среды на эффективность вакцинопрофилактики у детского населения: автореф. дис. . . . докт. мед. наук. Иркутск, 2008. 24 с.
- 9. Коклюш на территориях с высоким уровнем техногенного загрязнения окружающей среды / С.В. Ильина, М.А. Дронова [и др.] // Эпидемиология и инфекционные болезни. 2007. № 1. С. 18–21.
- 10. Вакцинопрофилактика полиомиелита живой полиовакциной в условиях экологического неблагополучия / Ильина С.В., Степаненко Л.А. [и др.] // Сибирский медицинский журнал. 2005. Т. 56, № 7. С. 48–50
- 11. Инфекция и техногенное загрязнение: Подходы к управлению эпидемиологическим процессом / Е.Д. Савилов, С.И. Колесников, Г.Н. Красовский; Рос. акад. мед. наук, Сиб. отд., Вост.-Сиб. науч. центр, Ин-т эпидемиологии и микробиологии. Новосибирск: Наука, 1996. 188 с.
- 12. Каральник Б.В., Маркова С.Г. Экологические аспекты АКДС-вакцинации // Журнал микробиологии, эпидемиологии и иммунобиологии. 1991. № 12. С. 34–38.
- 13. О реализации мероприятий третьего этапа Программы ликвидации кори в Российской Федерации / Г.Г. Онищенко, Е.Б. Ежлова [и др.] // Эпидемиология и инфекционные болезни. 2011. № 3. С. 4–10.
- 14. Оскирко А.А. Неспецифическая медико-экологическая реабилитация как путь повышения специфического иммунитета против дифтерии в периоды между плановыми ревакцинациями // Педиатрия. − 1997. № 2. C. 110-111.
- 15. Попова А.Ю. Влияние загрязнения окружающей среды хлорированными бифенилами на неспецифическую резистентность и поствакцинальный иммунитет: автореф. дис. ... канд. мед. наук. М., 1997. 23 с.
- 16. Рахманин Ю.А., Ревазова Ю.А. Донозологическая диагностика в проблеме «окружающая среда здоровье населения» // Гигиена и санитария. -2004. -№ 6. С. 3-5.
- 17. Семенов Б.Ф., Зверев В.В., Хаитов Р.М. Ожидаемые события в развитии вакцинопрофилактики до 2020–2030 гг. // Журнал микробиологии, эпидемиологии и иммунобиологии. 2010. № 2. С. 105–111.
- 18. Скачков М.В., Верещагин Н.Н. Особенности эпидемического процесса на территориях с различным уровнем антропогенной нагрузки // Эпидемиология и вакцинопрофилактика. 2004. № 3. С. 14–18.
- 19. Селезнева Т.С. Влияние вакцинопрофилактики на эпидемический процесс управляемых инфекций в Российской Федерации // Эпидемиология и инфекционные болезни. 2002. № 2. С. 6–11.
- 20. Фельдблюм И.В. Вакцинопрофилактика как жизнесберегающая технология и инструмент демографической политики // Эпидемиология и инфекционные болезни. Актуальные вопросы. 2011. № 2. С. 14–16.

#### References

1. Briko N.I. Politika i mehanizmy prinjatija reshenij v oblasti immunoprofilaktiki v RF: doklad na III Ezhegodnom Vseros. kongresse po infekcionnym boleznjam [The policy and the mechanisms of decision-making in the field of immunoprophylaxis in the Russian Federation]. Moscow, 2011, available at: http://www.congress-infection.ru/archiv.htm.

- 2. Vasneva Zh.P., Beljaeva L.V., Shaposhnikova S.V. Naprjazhennost' postvakcinal'nogo gumoral'nogo immuniteta u detej [Post-vaccination humoral immunity stress in children]. *Sbornik nauchnyh trudov «Organizacionnye, diagnosticheskie i lechebnye aspekty dejatel'nosti uchrezhdenij zdravoohranenija»*, Voronezh, 2005, pp. 187–190.
- 3. Zverev V.V., Juminova N.V. Jeffektivnost' vakcinacii protiv kori i jepidemicheskogo parotita [The effectiveness of vaccination against measles and mumps]. *Vakcinacija. Novosti vakcinoprofilaktiki*, 2000, vol. 11, no. 5, pp. 10–11.
- 4. Zajceva N.V., Ulanova T.S., Plahova L.V., Suetina G.N. Vlijanie polimetallicheskih zagrjaznenij ob#ektov okruzhajushhej sredy na izmenenie mikrojelementnogo sostava biosred u detej [The impact of polymetallic pollution of the environment on changes in the content of trace elements in biological media in children]. *Gigiena i sanitarija*, 2004, no. 4, pp. 11.
- 5. Zajceva N.V., Zemljanova M.A., Kir'janov D.A. Ocenka adaptacionno-prisposobitel'nyh reakcij u detej v uslovijah hronicheskogo vozdejstvija himicheskih faktorov [An assessment of adaptive responses in children chronically exposed to chemical factors]. *Jekologija cheloveka*, 2005, no. 9, pp. 29–31.
- 6. Zajceva N.V., Ulanova T.S., Dolgih O.V., Karnazhickaja T.V. Obosnovanie maksimal'no nedejstvujushhej koncentracii formal'degida v krovi detej, prozhivajushhih na territorijah s razlichnoj antropogennoj nagruzkoj [The justification of the no observed effect concentration of formaldehyde in children's blood in areas with different levels of anthropogenic pollution]. *Permskij medicinskij zhurnal*, 2010, vol. 27, no. 1, pp. 101–104.
- 7. Zajceva N.V., Ustinova O.Ju., Aminova A.I. Gigienicheskie aspekty narushenija zdorov'ja detej pri vozdejstvii himicheskih faktorov sredy obitanija: rukovodstvo [Hygienic aspects of health disorders in children exposed to chemical environmental factors: guidelines]. Ed. N.V. Zajceva. Perm': Knizhnyj format, 2011. 489 p.
- 8. Il'ina S.V. Vlijanie tehnogennogo zagrjaznenija okruzhajushhej sredy na jeffektivnost' vakcinoprofilaktiki u detskogo naselenija: avtoref. diss. ... doktora medicinskih nauk [The influence of anthropogenic pollution on the effectiveness of preventive vaccination in children: summary of the thesis ... of Dr. of Med. Sciences]. Irkutsk, 2008. 24 p.
- 9. Il'ina S.V., Dronova M.A. [et al.] Kokljush na territorijah s vysokim urovnem tehnogennogo zagrjaznenija okruzhajushhej sredy [Pertussis in areas with high levels of technogenic environmental pollution]. *Jepidemiologija i infekcionnye bolezni*, 2007, no. 1, pp. 18–21.
- 10. Il'ina S.V., Stepanenko L.A. [et al.] Vakcinoprofilaktika poliomielita zhivoj poliovakcinoj v uslovijah je-kologicheskogo neblagopoluchija [Preventive vaccination against poliomyelitis using a live polio vaccine in environmentally unfavorable areas]. Sibirskij medicinskij zhurnal, 2005, vol. 56, no. 7, pp. 48–50.
- 11. Savilov E.D., Kolesnikov S.I., Krasovskij G.N. Infekcija i tehnogennoe zagrjaznenie: Podhody k upravleniju jepidemiologicheskim processom [Infection and technogenic pollution: approaches to the management of the epidemiological process]. Novosibirsk: Nauka, 1996. 188 p.
- 12. Karal'nik B.V., Markova S.G. Jekologicheskie aspekty AKDS-vakcinacii [Environmental aspects of DPT vaccination]. *Zhurnal mikrobiologii, jepidemiologii i immunobiologii*, 1991, no. 12, pp. 34–38.
- 13. Onishhenko G.G., Ezhlova E.B. [et al.] O realizacii meroprijatij tret'ego jetapa Programmy likvidacii kori v Rossijskoj Federacii [On the implementation of the third stage of The Measles Elimination Program in the Russian Federation]. *Jepidemiologija i infekcionnye bolezni*, 2011, no. 3, pp. 4–10.
- 14. Oskirko A.A. Nespecificheskaja mediko-jekologicheskaja reabilitacija kak put' povyshenija specificheskogo immuniteta protiv difterii v periody mezhdu planovymi revakcinacijami [Non-specific health and environmental rehabilitation as a way to increase specific immunity against diphtheria over the periods of time between routine revaccination]. *Pediatrija*, 1997, no. 2, pp. 110–111.
- 15. Popova A.Ju. Vlijanie zagrjaznenija okruzhajushhej sredy hlorirovannymi bifenilami na nespecificheskuju rezistentnost' i postvakcinal'nyj immunitet: avtoref. diss. ... kand. med. nauk [The impact of environmental pollution with chlorinated biphenyls on non-specific resistance and post-vaccination immunity: summary of the thesis ... of PhD in Medicine]. Moscow, 1997. 23 p.
- 16. Rahmanin Ju.A., Revazova Ju.A. Donozologicheskaja diagnostika v probleme «okruzhajushhaja sreda zdorov'e naselenija» [Pre-nosological diagnosis in the «environment human health» problem]. *Gigiena i sanitarija*, 2004, no. 6, pp. 3–5.
- 17. Semenov B.F., Zverev V.V., Haitov R.M. Ozhidaemye sobytija v razvitii vakcinoprofilaktiki do 2020–2030 gg. [Upcoming events in the development of preventive vaccination up to the years 2020-2030]. *Zhurnal mikrobiologii, jepidemiologii i immunobiologii*, 2010, no. 2, pp. 105–111.
- 18. Skachkov M.V., Vereshhagin N.N. Osobennosti jepidemicheskogo processa na territorijah s razlichnym urovnem antropogennoj nagruzki [The features of the epidemic process in areas with different levels of anthropogenic pollution]. *Jepidemiologija i vakcinoprofilaktika*, 2004, no. 3, pp. 14–18.
- 19. Selezneva T.S. Vlijanie vakcinoprofilaktiki na jepidemicheskij process upravljaemyh infekcij v Rossijskoj Federacii [The impact of preventive vaccination on the epidemic process of vaccine preventable infections in the Russian Federation]. *Jepidemiologija i infekcionnye bolezni*, 2002, no. 2, pp. 6–11.
- 20. Fel'dbljum I.V. Vakcinoprofilaktika kak zhiznesberegajushhaja tehnologija i instrument demograficheskoj politiki [Preventive vaccination as a life-saving technology and a tool of population policy]. *Jepidemiologija i infekcionnye bolezni. Aktual'nye voprosy*, 2011, no. 2, pp. 14–16.

# POST-VACCINATION IMMUNITY AGAINST DIPHTHERIA, MEASLES, TETANUS AND PERTUSSIS IN CHILDREN EXPOSED TO ENVIRONMENTAL CHEMICAL FACTORS

### O.Yu. Ustinova, V.G. Makarova, O.V. Dolgikh

Federal Budget Scientific Institution "Federal Scientific Center for Medical and Preventive Health Risk Management Technologies", Russian Federation, Perm, 82 Monastyrskaya St, 614045

An assessment of post-vaccination immunity against diphtheria, measles, tetanus and pertussis in children with increased levels of chemical toxicants, caused by environmental exposure was conducted. It was determined that the levels of post-vaccination antibodies in this group of children were significantly lower than those in children living in environmentally favorable areas and that disorders in the development of post-vaccination immunity were observed 1.5 to 2.4 times more often. A true relationship between a decrease in the levels of specific post-vaccination antibodies and an increase in the levels of lead, chromium, manganese and o-cresol in the blood was identified.

**Keywords:** children, post-vaccination immunity, diphtheria, pertussis, measles, tetanus, environmental exposure, chemical factors.

<sup>©</sup> Ustinova O.Yu., Makarova V.G., Dolgikh O.V., 2013

Ustinova Olga Yurievna (Perm, Russia) – DSc in Medicine, Professor Deputy Director for Healthcare Services, the Federal Budget Scientific Institution "Federal Scientific Center for Medical and Preventive Health Risk Management Technologies" (email: ustinova@fcrisk.ru; tel.: 8 (342) 236-32-64).

**Makarova Venera Galimzyanovna** (Perm, Russia) – Allergist-Immunologist, the Federal Budget Scientific Institution "Federal Scientific Center for Medical and Preventive Health Risk Management Technologies" (email: root@fcrisk.ru; tel.: 8 (342) 236-32-64).

**Dolgikh Oleg Vladimirovich** (Perm, Russia) – DSc in Medicine, Professor, Head of the Department of Immunobiological Diagnostics, the Federal Budget Scientific Institution "Federal Scientific Center for Medical and Preventive Health Risk Management Technologies" (email: oleg@fcrisk.ru; tel.: 8 (342) 236-39-30).