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Our task was to create a mathematical model which could describe anti-virus immune response regula-

tion allowing for disorders in the adaptation (neuroendocrine and immune) systems caused by chemical fac-
tors of various genesis. We analyzed immune response allowing for immunity types (inborn and acquired one) 
with certain quantitative parameters chosen in order to characterize them, notably: interferon and NK-cells 
for inborn immunity, and virus-specific cytotoxic T-cells and antibodies-forming B-lymphocytes for acquired 
immunity. Regulatory mechanisms incorporated in the model comprise influences exerted by hypothalamus-
hypophysis-adrenals system hormones (corticoliberin, adrenocorticotropic hormone, and hydrocortisone), 
and cytokines (interleukin-1 and interleukin-2) produced by various regulatory cells of the immune system. 
The suggested model also takes spatial organization of infection and immune processes in different organs 
and tissues into account as we introduced a time lag for components interaction into it.  

The model includes a system of 18 ordinary differential equations with a retarded argument; its pa-
rameters characterize how fast various processes influencing an infection dynamics evolve in a body. The 
parameters are identified on the basis of published experimental data which describe a process of a body 
being infected with a virus. We calculated dynamics in the immune and neuroendocrine system parameters 
under a virus infection allowing for disorders in the marrow synthetic function. The model is developed 
within the framework of a concept viewing a human body as a multi-level model allowing for interactions 
between its systems and functional state of examined organs under influences exerted on them by hazardous 
factors of different genesis. The performed research gives a qualitative idea on biological factors which 
explain an infectious agent kinetics under a virus infection and impacts exerted by factors of various gene-
sis. The results can be applied for adjusting parameters of existing population models, spread and clinical 
course of various infections, and for making long-term forecasts on an epidemiologic situation which is 
necessary when we analyze infectious diseases risks, including those which occur under impacts exerted on 
a human body by hazardous environmental factors. 

Key words: mathematical model, dynamic system, virus disease, inborn immunity, acquired immunity, 
neuroendocrine regulation. 
 

Nowadays an issue of describing inter-
relations in adaptive systems which change 

their functioning in order to preserve their 
optimal state under changing conditions is 
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of great interest to researchers both in the 
sphere of neuroendocrine regulation and 
immune mechanisms [25, 30]. Works pub-
lished in the field focus on various sings of 
mutual regulatory influences [17, 41]. 
Some research dwells on neuroendocrine 
regulation of the immune system [4, 19, 
29] and controlling influence exerted by 
the immune system, for example, via cyto-
kines production, both on itself and on the 
neuroendocrine regulatory loop [37, 41]. 
Most experts believe neuroendocrine and 
immune regulatory loops are a unified "su-
per"-regulatory meta-system   [9, 21], 
which coordinates a complicated multi-level 
controlling process in a living system. The 
immune system is responsible for various 
mechanisms aimed at a macro-organism pro-
tection, including those preventing from vi-
rus infections. Losses occurring due to infec-
tious morbidity make a considerable contri-
bution into overall damages done to 
population by various health disorders and 
are a great medical and social problem [44]. 
Thus, morbidity with children virus infec-
tions (measles, chicken pox, and rubella) is 
significant among children population  [12]. 
Acute respiratory virus infections in the RF 
take the first place among reasons for a tem-
porary disability among adult population. 
Increased morbidity with virus hepatitis [11], 
HIV-infection [1], etc. is another serious 
problem. 

Technogenic environmental factors can 
cause pathomorphism and lead to deteriora-
tion of infectious diseases clinical course and 
outcome [8,10,12,13]. Technogenic process-
es exert influence on regulatory (immune 
and neuroendocrine) systems; thus, for ex-
ample, it was shown [3], that technogenic 
chemical factors exerted negative impacts on 
the said systems functioning. 

Observation techniques or an experi-
mental approach which are conventionally 
applied in biology and medicine to assess 

functional disorders in the immune and neu-
roendocrine system usually involve conse-
quent statistical processing of the results. In 
spite of all their significance, they don't fully 
allow to analyze mechanisms and assess con-
sequences caused by an effect occurring 
when functional disorders accumulate in 
body systems. It is due to limitations which 
exist in choice of representative groups, com-
plications related to identification and detec-
tion of basic factors, and substantial material 
costs which are required for organizing and 
conducting experiments. 

Mathematical modeling seems to be one 
of the most efficient approaches to finding an 
optimal strategy for examining as well as 
predicting clinical course of virus diseases. 
To study regulatory systems influences, we 
previously suggested to apply a mathematical 
model of interaction between the immune and 
neuroendocrine system which we developed 
on the example of a bacterial infection [14]. 
This approach allows to save time and re-
sources required for solving the set tasks. 
Mathematical models make it possible to ana-
lyze influence exerted by various factors and 
their combinations on an individual and 
population level. An example of such models 
is mathematical prediction models which de-
scribe correlation between human health and 
environmental factors [7].  

Our research goal was to give a 
mathematical description of an interaction 
between the immune and neuroendocrine 
systems mechanisms which occurs under a 
virus infection; this description allowed for 
functional disorders caused by negative 
influences exerted by chemical environ-
mental factors. 

Data and methods. Structural scheme 
of our model given in Figure 1 is a set of 
interrelated immune and neuroendocrine 
system elements which are the most signif-
icant components in a body response to a 
virus invasion. The model allows for func-
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tional state of organs which are being con-
sidered. We can highlight such factors in-
fluencing changes in their state as natural 
ageing and negative impacts exerted by 
various chemicals penetrating a body from 
the environment. 

As we describe interactions between 
the immune and endocrine system which 
are very complicated we introduce certain 
simplifying assumptions into the design of 
our model. Cells and viruses populations 
are assumed to be evenly spread over the 
epithelial layer of a target organ at any 
moment. We also assume that speed of 
changes in any variable in the model is de-
termined by the current values of all the 
variables. At present we assume that the 

basic processes which regulate immune 
protection dynamics take place in three lo-
cal volumes: brains (hypophysis and hypo-
thalamus), abdominal cavity (adrenals), 
and a target organ. Interaction between 
these three local volumes occurs with a 
time lag. 

Protection mechanisms are activated 
after macrophages have started interaction 
with dead cells of a target organ which 
were destroyed due to a virus life cycle. As 
macrophages remove cells damaged by a 
virus, simultaneously information mole-
cules of (cytokine) interleukin-1 are syn-
thesized  [22]. 
 

 

 
Figure 1. Immune and neuroendocrine system functioning 

in case virus infection occurs: a conceptual scheme 
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As interleukin-1 concentration in blood in-
creases, it makes for T-helpers producing 
interleukin-2 and stimulates specific recep-
tors in the hypothalamus to produce cortico-
liberin, a release hormone. Corticoliberin 
influences the adenohypophysis and causes 
adrenocorticotropic hormone (ACTH) secre-
tion [18], When penetrating blood, ACTH 
stimulates the adrenals to produce hydrocor-
tisone; increased concentration of this hor-
mone inhibits ACTH secretions and blocks 
interleukin-1 production as per negative 
feedback mechanism. 
Regulatory impacts exerted by interleukin-
2 are aimed at NK-cells cytotoxic T-
lymphocytes and В-cells [15, 32, 35]. Basic 
NK-cells function is related to infected 
cells elimination at early stages of a body 
protecting against virus infections. NK-
cells are produced by the marrow. NK-
cells activity is influenced by various cyto-
kines and hormones produced by a body. 
In our work we allow for inhibiting effects 
exerted by hydrocortisone and stimulating 
influence by interleukin-2 [24, 28, 36]. 

Infected cells produce interferon and it 
is another mechanism of primary anti-virus 
body protection [31, 39, 40]. Interferon in-
fluences neighboring uninfected cells and 
invokes resistance to virus infection in 
them [20]. This resistance is temporary and 

then cells transfer into adiaphoria thus be-
coming resistant to interferon influence for 
a while [33]. There are basic mechanisms 
of specific acquired immune response: B-
cells produce antibodies  [16], which bind 
free viruses, and cytotoxic T-lymphocytes 
destroy cells infected with viruses [36]. 
Active reproduction of the above-
mentioned immune response cells starts af-
ter a body gives its first signals that a virus 
infection has occurred; these signals are 
given via stimulating effects by interleukin-
2. Activation of antibodies production by B-
cells and T-killers entering the circulatory 
and lymphatic systems occurs only when a 
number of specific cells reaches a certain 
level. Hydrocortisone inhibits antiviral ac-
tivity of the examined cells. The initial 
number of acquired immune response cells 
depends on the marrow functional state and 
previous case history of a body being in-
fected with this virus. 

Basing on the above-given interaction 
scheme we can describe a mathematical 
model of the regulation mechanism com-
prising elements of the immune and endo-
crine system with the help of the designed 
model which is a system consisting of 18 
ordinary first-order differential equations 
with a retarded argument (1): 
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were AC  – antibodies concentration, 
[mIU/ml]; 

ACTHC  – is adrenocorticotropic hor-
mone (ACTH) concentration, 
[picogram/ml (pg/ml)]; 

BC  – is B-cells concentration, [cells/ml]; 
CTLC  – is cytotoxic T-lymphocytes con-

centration, [cells/ml]; 
CRHC  – is corticoliberin concentration, 

[pg/ml]; 
DC  – is number of dead cells in a tar-

get organ, [cells]; 
HEC  – is number of healthy cells in a 

target organ, [cells]; 
IC  – is number of infected cells in a 

target organ, [cells]; 
1ILC  – is interleukin-1 concentration, 

[pg/ml]; 
2ILC  – is interleukin-2 concentration, 

[pg/ml]; 
IFNC  – is interferon concentration, 

[МЕ/ml]; 
KC  – is hydrocortisone concentration, 

[nanogram/ml]; 
MC  – is macrophages (monocytes) 

concentration, [cells/ml]; 
NKC  – is NK-cells (natural killers) con-

centration, [cells/ml]; 
RC  – is number of resistant cells in a 

target organ, [cells]; 
THC  – is T-helpers concentration, 

[cells/ml]; 
VC  – is antigens concentrations, [cop-

ies/ml]; 
aF  – is adrenals functional capacity, 

synthesizing function, [dimensionless val-
ue]; 

bF  – is marrow functional capacity, 
synthesizing function, [dimensionless val-
ue]; 

hF  – is hypothalamus functional capac-
ity, synthesizing function, [dimensionless 
value]; 

pF  – is hypophysis functional capacity, 
synthesizing function, [dimensionless val-
ue]. 

The model parameters were indenti-
fied on the basis of experimental data ob-
tained during research on a process of a 
body being infected with a flu virus; pa-
rameters values are given in Table. 

We suggest to consider functional dis-
orders in the immune system on the exam-
ple of the marrow which produces im-
munocytes. Functional changes in the mar-
row occurring due to various reasons, 
chemical contamination included, influ-
ence rates at which various inborn and ac-
quired immunity cells are produced. In fu-
ture it leads both to quantitative (immuno-
cytes and auxiliary immune system cells 
number dynamics) and qualitative (lower 
functional activity of immune-competent 
and auxiliary cells) changes in the immuni-
ty, including those evolving due to auto-
regulation mechanisms disorders. Func-
tional disorders in the neuroendocrine sys-
tem elements which we described earlier 
and which can be caused by chemical envi-
ronmental factors [3, 5], in their turn, are 
able to result in the "outer" immune system 
failure and lower immune response effi-
ciency. 

To describe this factor, we apply a 
mathematical model which allows to pre-
dict functional disorders evolution under 
exposure to environmental factors. The 
model allows for body age-related peculi-
arities, and functional disorders accumula-
tion due to natural processes occurring in a 
body and environmental factors impacts. 

Disorders in each organ's functional 
abilities is characterized with a functional 
damage parameter  .  ;   means an organ 
functions properly (perfectly).   means an 
organ is unable to fulfill its functions.
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Parameters of the mathematical model describing interactions between the immune and endocrine 
systems under a virus infection 

Parameter Value Source Parameter Value Source 
k1 2.35*10-11 [1/cells*day] [34] k27 1.1*1014 [cells/ml*day]  
k2 0.98 [1/day] [36] k28 0.11 [1/day]  
k3 1.1*10-17 [ml/IU*day] [21] k29 4*1015 [cells/ml*day] [36] 
k4 2*10-12 [ml/copies*day] [36] k30 4.15 [ml/pg*day] [36] 
k5 2.5*10-17 [ml2/cells*pg*day]  k31 1.6*10-11 [1/ cells*day] [21] 
k6 6.6*10-18 [ml/pg*day] [21] k32 0.4  [1/day] [36] 
k7 1.5 [1/day] [2] k33 5.75 [ml/pg*day] [36] 
k8 0.5 [dimensionless]  k34 0.4 [1/day] [36] 
k9 0.5 [dimensionless]  k35 7.56*1012[mIU/cells] [36] 
k10 3.2*106 [IU/cells*ml*day]  k36 0.5 [dimensionless]  
k11 1.01*10-10 [1/cells*day] [21] k37 8.6*10-10 [ml/copies*day] [21] 
k12 8 [1/day] [21] k38 0.043 [1/day] [36] 
k13 10-14 [ml/cells*day]  k39 0.5 [dimensionless]  
k14 510 [copies/ml*cells*day] [2] k40 0.002 [ml/pg]  
k15 8.6*10-10 [ml/mIU*day] [43] k41 3.767 [1/day] [26] 
k16 6.1*10-12 [1/cells*day] [21] k42 0.5 [dimensionless]  
k17 1.7 [1/day] [21] k43 0.7572 [1/day] [38] 
k18 3*109 [cells/ml*day] [36] k44 0.1972 [1/day] [38] 
k19 0.03 [1/day] [36] k45 1.8139*1020 [cells/ml]  
k20 2.94*10-19 [pg/cells2*day] [20] k46 0.4*1016 [cells/ml] [36] 
k21 0.5 [dimensionless]  k47 3.055 [ng/ml] [42] 
k22 0.1245 [1/day] [27] k48 7.659 [pg/ml] [26] 
k23 5.8*103[cells/ml*day]  k49 21 [pg/ml] [38] 
k24 0.0058 [1/day]  k50 3.055 [ng/ml] [42] 
k25 3.28*10-7 [ml/cells*day]   T 0.0132 [day] [42] 
k26 0.248 [1/day]   1.1*1014 [cells/ml*day]  

 

Outer (for an organ being considered) 
impacts and internal degradation (ageing) 
are basic reasons for damages in it. Outer 
impacts are hazardous substances penetrat-
ing into a body and influencing damages to 
an organ.   

Assuming that damages speeds depend 
on various factors, we suggest the follow-
ing structure of equations describing evolu-
tion of functional damages to human or-
gans (2): 

 
1

α β 1
n

i
i N

i i

pdF F
dt p=

= + −∑ ,  (2) 

where α  – is a coefficient which charac-
terizes a speed at which an organ grows 
older [1/year]; 

βi  – is a coefficient which characterizes  a 
value of impacts exerted by i-th hazardous fac-
tors on functional damages to an organ [1/ 
year]; 

ip  – is i-th hazardous substance intro-
duction into a human body; 

N
ip  – is standard (maximum permissi-

ble)  value of i-th substance introduction for 
an organ being considered. 

So called  McCauley brackets are giv-
en as x  будут обозначаться так назы-
ваемые скобки Мак-Кейли (McCauley): 

0x =  при  х < 0 и x x=  при х ≥ 0. 
The first summand in the equation (2) 

makes an additional contribution into func-
tional damages due to an increase in the 
intensity an undamaged part of an organ 
functions with in case any structural dam-
ages disorders occur; this increased intensi-
ty results from the necessity for a healthy 
part of an organ to enter an enhanced mode 
required for proper organ functioning. This 
enhanced functioning mode decreases cells 
life and causes faster organ destruction. 
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The second summand characterizes dam-
ages caused by environmental factors 
which can occur due to excessive hazard-
ous substances introduction. The suggested 
structure describes the overall picture of 
damages evolution and allows for self-
destruction (natural ageing) and damages 
accumulation caused by hazardous sub-
stances introduction which is beyond the 
set standards. 

As all the equations in the model are 
complicated and non-linear, it becomes 
more difficult to obtain analytical solution 
with its application. To solve the differential 
equation system, we apply implicit numeri-
cal technique by Runge-Kutta of the third 
order. 

Results and discussion. To test our 
model, we performed a numerical experi-
ment and implemented three possible sce-
narios of the system behavior. The differ-
ence between them was related to the de-
gree of disorders in the marrow 
synthesizing function, and this degree was 
determined by the intensity of impacts ex-
erted by negative chemical factors. Each 
scenario involved breaking the system bal-
ance by setting up the initial viruses level. 
The results are given in Figures 2. 

Our first scenario modeled virus inva-
sion and a body successful fighting against 
it ( 1=bF ). Initially macrophages produced 
interleukin-1 which stimulated interleukin-
2 production. The latter in its turn activated 
NK-cells which were already present in a 
body; they rapidly inhibited infected cells 
thus preventing viruses from being re-
leased. After all viruses were successfully 
destroyed, interleukin-1 concentration went 
down to zero. Tentatively speaking, we can 
assume that it will correspond either to ab-
sence of any clinical signs of a disease or 
to a very mild form of it which will result 
in complete and fast recovery.  

 

 
а  

 
b  

Figure. 2.  а –  Graph showing changes in 
number of virus copies in a body over time 

and depending on damages to the marrow syn-
thesizing function Graph showing changes in 
number of virus copies in a body over time 

and depending on damages to the marrow syn-
thesizing function; b – Graph showing changes 
in % of healthy cells quantity against their ini-

tial level 

The second scenario describes activa-
tion of not only inborn immunity but also 
acquired one ( 85,0=bF ). If we take clini-
cal practices, a disease with average gravi-
ty can be an example of such a scenario. At 
initial stages fighting against a virus is 
based on inborn immunity. But a body 
can't overcome it and viruses continue to 
reproduce themselves. Acquired immunity 
activations occurs on the fifth day and a 
number of viruses goes down rapidly. We 
can observe this scenario when the marrow 
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synthesizing function is a bit weakened, 
when virus load is substantial, or when 
there is no immune memory about this 
concrete type of viruses.  

The third scenario concentrates on vi-
rus invasion in case when the marrow syn-
thesizing function is significantly reduced 
( 7,0=bF ) as a result of adverse impacts 
exerted by the environment. These impacts 
cause initially low levels of macrophages, 
NK-cells, B-cells, and cytotoxic T-
lymphocytes in a body. As a result a num-
ber of viruses in a body grows continuous-
ly. It can correspond to a very serious dis-
ease or even lethal outcome of it.  

When an infection occurs, a number of 
healthy cells in a target organ gradually 
goes down due to negative impacts exerted 
by viruses. There are the following grada-
tions for damages to a target organ tissue 
corresponding to a disease clinical form: 
damage to less than 8-10% of a tissue cor-
responds to a mild disease; 10-20%, an av-

erage disease; 20-25%, a grave disease; 
when more than 25-30% of a target organ 
tissue is damaged, lethal outcome is rather 
probable [6]. 

Conclusions. So, the suggested pre-
dictive mathematical model of regulatory 
systems functioning under virus invasion 
and under exposure to chemical factors 
represents the occurring processes quite 
qualitatively and sufficiently. This model is 
a simplified variant of a complicated multi-
component process of interaction between 
regulatory systems under chemical contam-
ination when virus invasion occurs. How-
ever, it allows to show mechanics of multi-
component interaction between regulatory 
systems when inflammatory reactions of 
viral genesis evolve. Basing on it, in future 
we plan to expand the model component 
structure possibly performing population 
analysis of dependence between infectious 
morbidity and chemical contamination.
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